Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Kedlaya K.S., Poonen B., Vakil R. — The William Lowell Putnam Mathematical Competition 1985–2000: Problems, Solutions, and Commentary | 270 |
Abramowitz M., Stegun I. (eds.) — Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Table | 771 |
Bruce C.Berndt — Ramanujan's Notebooks (part 5) | 557, 558 |
Andrews G., Askey R., Roy R. — Special Functions | 452 |
Stevens J.P. — Applied multivariate statistics for the social sciences | 514 |
Zinn-Justin J. — Quantum field theory and critical phenomena | 526 |
Abramowitz M., Stegun I. — Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables | 771 |
Wall H.S. — Analytic Theory of Continued Fractions | 193 |
Ames W.F. — Numerical methods for Partial Differential Equations | 326 |
Bulirsch R., Stoer J. — Introduction to numerical analysis | 150, 151ff, 363 |
Golub G.H., Ortega J.M. — Scientific Computing and Differential Equations : An Introduction to Numerical Methods | 94ff |
Schweizer W. — Numerical quantum dynamics | 165 |
Conte S.D., de Boor C. — Elementary numerical analysis - an algorithmic approach | 251ff, 313 |
Rawlings J.O., Pantula S.G., Dickey D.A. — Applied Regression Analysis: A Research Tool | 242 |
Rencher A.C. — Methods of multivariate analysis | 222—225 |
Myers J.L., Well A.D. — Research design and statistical analysis | see Trend analysis |
Bini D., Pan V.Y. — Polynomial and matrix computations. Fundamental algorithms. Vol.1 | 136, 137 |
Handscomb D.C. — Methods of numerical approximation | 31 |
Olver F.W.J. — Asymptotics and Special Functions | 46—48, 65 (see also “Hermite polynomials, Jacobi polynomials, Laguerre polynomials, Legendre polynomials”) |
Conte R. — Painleve Property: One Century Later | 246 |
Helgaker T., Jorgensen P., Olsen J. — Molecular Electronic-Structure Theory. Part 2 | 358 |
Johnson N., Kotz S., Kemp A.W. — Univariate discrete distributions | 27—29 |
Baker G.A., Graves-Morris P. — Pade approximants (vol. 2) | I: 82—86, 209—210, 255—256 |
Bellman R. — Methods of nonlinear analysis (Vol. 1) | 229 |
Baker G.A., Graves-Morris P. — Pade approximants (vol. 1) | I:82—86, 209—210, 255—256 |
Kythe P.K., Schaferkotter M.R. — Partial Differential Equations and Mathematica | 86 |
Jones W.B., Thron W.J. — Continued fractions: Analytic theory and applications | 6, 7, 250—255 |
Borwein P, Erdelyi T — Polynomials and polynomial inequalities | 57—79 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 982 |
Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 206 |
Jackson D. — Fourier Series and Orthogonal Polynomials | 45—68, 123—125, 149—208, 213—216, 223—228 |
Rainville E.D. — Special Functions | 147—156, 240 |
Khuri A.I. — Advanced calculus with applications in statistics | 437, 453 |
Buckingham R.A. — Numerical Methods | 306, 325 |
Lay D.C. — Linear Algebra And Its Applications | 388 |
Phillips G.M. — Interpolation and Approximation by Polynomials | 64 |
Nikiforov A.F., Uvarov V. — Special Functions of Mathematical Physics: A Unified Introduction with Applications | 29, 394 |
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 7.17, 13.0, 13.1, 13.2, 13.4, 13.6 |
Erdelyi A. — Higher Transcendental Functions, Vol. 3 | see “Polynomials” |
Young R.M. — An Introduction to Nonharmonic Fourier Series | 206 |
Stetter H. J. — Numerical polynomial algebra | 137 |
Shohat J. — The problem of moments | ix, x, 35, 36, 39, 130, 132, 133, 136, 137, 138 |
Aldrovandi R. — Special matrices of mathematical physics (stochastic, circulant and bell matrices) | 178 |
Erdelyi A. — Higher Transcendental Functions, Vol. 2 | 153 ff. |
Hamming R.W. — Numerical methods for scientists and engineers | 452 |
Hazewinkel M. — Handbook of Algebra (part 2) | 709 |
Kincaid D., Cheney W. — Numerical analysis: mathematics of scientific computing | 459 |
Bateman H. — Partial Differential Equations of Mathematical Physics | 317, 325 |
Mehta M.L. — Random Matrices | 71, 77, 78, 101, 103, 107, 108, 118 |
Antia H.M. — Numerical Methods for Scientists and Engineers | 188, 195, 196, 200, 402, 406—409, 855 |
Kreyszig E. — Advanced engineering mathematics | 209 |
Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 54 |
Estrada R., Kanwal R.P. — A distributional approach to asymptotics theory and applications | 405 |
Luke Y.L. — The special functions and their approximations (volume 1) | see Chapter VIII (267—329) |
Haight F.A. — Handbook of the Poisson Distribution | 64 |
Garbey M., Kaper H.G. — Asymptotic Analysis and the Numerical Solution of Partial Differential Equations, Vol. 130 | 47 |
Wimp J. — Computation with recurrence relations | 53 |
Luke Y.L. — Mathematical Functions and Their Approximations | 428, 482 (see also Jacobi polynomials, Chebyshev polynomials, etc.) |
Trefethen L.N., Bau D. — Numerical Linear Algebra | 285—292, 341 |
Conte R. — The Painlevé property: One century later | 246 |
Baker G.A. — Essentials of Padé Approximants in Theoretical Physics | 85—89 |
Neter J., Kutner M.H., Wasserman W. — Applied Linear Regression Models | 319 |
Snyder M.A. — Chebyshev methods in numerical approximation | 5, 6, 7, 34 |
Fike C.T. — Computer Evaluation of Mathematical Functions | 97 |
Bellman R.E., Dreyfus S.E. — Applied Dynamic Programming | 323 |
Marks R.J.II. — The Joy of Fourier | 10, 42, 43, 53 |
Jordan C. — Calculus of Finite Differences | 436 |
Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 337, 361 |
Meurant G. — The Lanczos and conjugate gradient algorithms: from theory to finite precision computations | xii, 1, 139 |
Rice J.R. — Linear Theory. Volume 1. The approximation of functions | 36 |
Gloub G.H., Ortega J.M. — Scientific Computing and Differential Equations | 94ff |
Natanson I.P. — Constructive function theory, Volume II. Approximation in mean | 45 |
Hamming R.W. — Numerical Methods For Scientists And Engineers | 238 |
Fox L., Parker I.B. — Chebyshev Polynomials in Numerical Analysis | 8, 15, 27—29, 34—39, 45, 83 |
Stewart G.W. — Afternotes on Numerical Analysis | 169, 171 |
Bellman R. — Perturbation Techniques in Mathematics, Physics, and Engineering | 113 |
Richards P.I. — Manual of Mathematical Physics | 283 |
Muller J.-M. — Elementary functions: algorithms and implementation | 22 |
Zhang S., Jin J. — Computation of Special Functions | 12—43 |
Luke Y.L. — Special Functions and Their Approximations. Volume II | I, 267—329, see also "Jacobi polynomials", "Chebyshev polynomials", "Bessel polynomials" |
Mason R.L., Gunst R.F., Hess J.L. — Statistical Design and Analysis of Experiments, with Applications to Engineering and Science | 207 |
Krall A.M. — Hilbert Space, Boundary Value Problems, and Orthogonal Polynomials | xiii, 223, 343 |
Kendall M.G. — The advanced theory of statistics (vol. 2) | 146—154, 159—167 |
Aitken A.C. — Statistical mathematics | 115, 116, 120, 124 |
Lemm J.M., Meurant G. — Computer Solution of Large Linear Systems | 41, 267, 287, 320, 374, 375, 515 |
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 227—230 |
Natterer F., Wubbeling F. — Mathematical methods in image reconstruction | 6 |
Kanwal R.P. — Generalized functions: Theory and technique | see "Polynomials" |
Godsil C. — Algebraic Combinatorics (Chapman Hall Crc Mathematics Series) | 1, 6, 60, 131 |
Abramowitz M., Stegun I.A. (eds.) — Handbook of mathematical functions (without numerical tables) | 771 |
Rivasseau V. — From Perturbative to Constructive Renormalization | 129 |
Wester M.J. — Computer Algebra Systems: A Practical Guide | see also "Chebyshev polynomials" |
Brezinski C. — History of Continued Fractions and Padé Approximants | 165, 204, 213, 291 |
John P. — Statistical Design and Analysis of Experiments (Classics in Applied Mathematics No 22. ) | 50 |
Dennery P., Krzywicki A. — Mathematics for Physicists | 203—216 |
Srivastava H.M., Manocha H.L. — A Treatise on Generating Functions | 9, 71, 73, 76, 139, 403, 409, 434 |
Hoel P. — Introduction to Mathematical Statistics | 176 |