| 
		        
			        |  |  
			        |  |  
					| Àâòîðèçàöèÿ |  
					|  |  
			        |  |  
			        | Ïîèñê ïî óêàçàòåëÿì |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Neter J., Kutner M.H., Wasserman W. — Applied Linear Regression Models |  
                    |  |  
			        |  |  
                    | Ïðåäìåòíûé óêàçàòåëü |  
                    | | "Best" subsets algorithms      429 
  criterion      426—428 
  criterion      423—425 
  criterion      423—425 
  criterion      422—423 Addition theorem      2
 Adjusted coefficient of multiple determination      241—242
 All-possible-regressions selection procedure      421—429
 Allocated codes      351—352
 Analysis of variance      84—86
 Analysis of variance models      343
 Analysis of variance table      89—90
 ANOVA table      89—90
 Asymptotic normality      70
 Autocorrelation      444—448
 Autocorrelation parameter      448
 Autocorrelation, remedial measures      454—460
 Autocorrelation, test for      450—454
 Autoregressive error model      see "Regression model"
 Backward elimination selection procedure      435—436
 Berkson model      166—167
 Beta coefficient      262
 Biased estimation      394—395
 Binary variable      330 354 see
 Bivariate normal distribution      492—496
 BMDP      113 251 431
 Bonferroni joint estimation procedure for inverse predictions      174
 Bonferroni joint estimation procedure for mean responses      158—159 245
 Bonferroni joint estimation procedure for prediction of new observations      159—160 246—247
 Bonferroni joint estimation procedure for regression coefficients      150—154 243
 Calibration problem      174
 Central limit theorem      6
 Chi-square distribution      7—8
 Chi-square distribution, table of percentiles      520
 Cochran's theorem      92
 Coefficient of multiple correlation      242 506
 Coefficient of multiple correlation, inferences      506—507
 Coefficient of multiple determination      241 506
 Coefficient of multiple determination, adjusted      241—242
 Coefficient of multiple determination, inferences      506—507
 Coefficient of partial correlation      288—289 507—508
 Coefficient of partial correlation, first-order      508
 Coefficient of partial correlation, inferences      508
 Coefficient of partial correlation, second-order      508
 Coefficient of partial determination      286—288 507—508
 Coefficient of partial determination, inferences      508
 Coefficient of simple correlation      97—99 494
 Coefficient of simple correlation, inferences      502—504
 Coefficient of simple determination      96—97 501—502
 Coefficient of simple determination, inferences      502—504
 Column vector      187
 Complementary event      3
 Conditional probability      3
 Conditional probability function      4
 Confidence coefficient, interpretation of      70—71 84
 Confidence set      152
 Consistent estimator      9
 Contour diagram      235—237 494—495
 Cook's distance measure      407—409
 Correction for mean sum of squares      90
 Correlation coefficient      see "Coefficient of multiple correlation" "Coefficient "Coefficient
 Correlation Index      312
 Correlation matrix      382
 Correlation matrix of the independent variables      381
 Correlation model      491—492
 Correlation model, bivariate normal      492—496
 Correlation model, multivariate normal      505
 Correlation transformation      378—379
 Covariance models      343
 Covariance of two functions of random variables      6
 Covariance of two random variables      5
 Cox, D.R.      176
 Degrees of freedom      7—8
 Deleted residual      405—406
 Denominator degrees of freedom      8
 Dependent variable      25 28
 Determinant of matrix      202
 Diagonal matrix      196—197
 Disturbance term      445
 Dummy variable      34 330 see
 Durbin — Watson test      450—454
 Durbin — Watson test, table of test bounds      530—531
 Error mean square      47
 Error sum of squares      47
 Error term      31
 Error term variance      31 46—48 50
 Error term, nonconstancy of error variance      113—114 123 133
 Error term, nonindependence of      116—118 123 133
 Error term, nonnormality of      118—120 123 133
 Expected mean square      90—91
 Expected value of function of random variables      5—6
 Expected value of random variable      3
 Experimental data      35
 Exponential regression function      468
 Extra sum of squares      282—286
 F distribution      8—9
 F distribution, table of percentiles      521—527
 Family confidence coefficient      150
 Family of estimates      150
 First differences      458—459
 First-order autoregressive error model      448—450
 First-order autoregressive error model, first differences approach      458—460
 First-order autoregressive error model, iterative estimation approach      455—458
 First-order autoregressive error model, test for autocorrelation      450—454
 First-order regression model      31 227 229—230 see
 Fisher, R.A.      503
 Fitted value      41
 Fitted value in terms of hat matrix      401
 Forward selection procedure      435
 Full model      95
 Functional relation      24
 Gauss — Markov theorem      39—40 64
 Gauss — Newton method      472—479
 General linear regression model      230—234 237—238
 General linear test      94—96 293—296
 Hat matrix      220—221
 Heteroscedasticity      170
 Homoscedasticity      170
 Hyperplane      230
 Idempotent matrix      221
 Identity matrix      197
 Independence of random variables      5
 Independent variable      25 28
 Indicator variable      329—330 353—354
 Indicator variable in comparing regression functions      343—345
 Indicator variable in piecewise linear regression      346—350
 Indicator variable in time series model      350—351
 Indicator variable, as dependent variable      354—357
 Influential observations      407—409
 Instrumental variable      165—166
 Interaction effect      232—237
 Interaction effect coefficient      304
 Interaction effect with indicator variables      335—339
 Intrinsically linear regression model      467
 Inverse of matrix      200—204
 Inverse prediction      172—174
 Joint confidence region for regression coefficients      147—150 217 243
 Joint probability function      4
 Lack of fit mean square      129
 Lack of fit sum of squares      128
 Lack of fit test      123—132 245—246
 Least absolute deviations estimation      410—411
 Least squares criterion      36
 Least squares estimation      10
 Least squares estimation, control of roundoff errors      377—382
 Least squares estimation, multiple regression      238—239
 Least squares estimation, nonlinear regression      470—480
 Least squares estimation, simple linear regression      36—40 44—46 210—212
 Least squares estimation, weighted      167—172 219—220 263
 Leverage      402
 
 | Likelihood function      9 Linear dependence      199—200
 Linear effect coefficient      301
 Linear model      31 466—467 see
 Linear model, general linear test      94—96 293—296
 Linear regression model      see "Regression model"
 Linearity, test for      123—132
 Logistic regression function      361—362 468—469
 Logistic transformation      362
 Logit transformation      362
 Marginal probability function      4
 Marquardt algorithm      479—80
 Matrix of quadratic form      215
 Matrix with all elements      1 198
 Matrix, addition      190—191
 Matrix, definition      185—187
 Matrix, determinant      202
 Matrix, diagonal      196—197
 Matrix, dimension      186
 Matrix, elements      186
 Matrix, equality of two      189
 Matrix, hat      220—221
 Matrix, idempotent      221
 Matrix, identity      197
 Matrix, inverse      200—204
 Matrix, multiplication by matrix      192—196
 Matrix, multiplication by scalar      192
 Matrix, nonsingular      201
 Matrix, random      205—208
 Matrix, rank      200
 Matrix, scalar      197—198
 Matrix, singular      201
 Matrix, square      187
 Matrix, subtraction      190—191
 Matrix, symmetric      196
 Matrix, theorems      204—205
 Matrix, transpose      188—189
 Matrix, vector      187—188
 Matrix, zero vector      198—199
 Maximum Likelihood Estimation      9—10
 Maximum likelihood estimation of regression parameters      50—51
 Mean of population, estimation of difference between two      14—16
 Mean of population, estimation of single      11
 Mean of population, test concerning, difference between two      14—16
 Mean of population, test concerning, single      11—12
 Mean response      41
 Mean response, multiple regression, estimation      244
 Mean response, multiple regression, joint estimation      245
 Mean response, simple linear regression, interval estimation      75—76 217
 Mean response, simple linear regression, joint estimation      157—159
 Mean response, simple linear regression, point estimation      41—43
 Mean square      46 88
 Mean square, expected value of      90—91
 Mean squared error of regression coefficient      395
 Mean squared error, total of n fitted values      426
 Measurement errors in observations      164—167
 Method of steepest descent      479
 Minimum absolute deviations method      411
 Minimum sum of absolute deviations method      411
 Minimum variance estimator      9
 Minimum-
  -norm method      411 Multicollinearity      271—278 382—390
 Multicollinearity, detection of      390—393
 Multicollinearity, remedial measures      393—400
 Multiple correlation      see "Coefficient of multiple correlation"
 Multiple regression      see "Mean response" "Prediction "Regression "Regression "Regression "Selection
 Multiplication theorem      3
 Multivariate normal distribution      505
 Noncentrality parameter      71
 Nonexperimental data      35
 Nonlinear regression model      468—469
 Nonlinear regression model, inferences about parameters      480—483
 Nonlinear regression model, least squares estimation      470—480
 Nonsingular matrix      201
 Normal equations      38
 Normal error regression model      see "Regression model"
 Normal probability distribution      6—7
 Normal probability distribution, table of areas and percentiles      517
 Normal probability plot      118—120
 Numerator degrees of freedom      8
 Observation      25
 Observational data      35
 Observed value      41
 Orthogonal polynomials      319
 Outlier      114—116 123
 Outlier, identification of      400—407
 Overall F test      281 289
 p-value      12—13
 Paired observations      15—16
 Partial correlation      see "Coefficient of partial correlation"
 Partial F test      281 289
 Partial regression coefficient      229
 Piecewise linear regression      346—350
 Point estimator      38
 Polynomial regression model      300—305
 Power of tests for regression coefficients      71—72
 Prediction bias      437
 Prediction interval      77—78
 Prediction of new observation, inverse      172—174
 Prediction of new observation, multiple regression      246—247
 Prediction of new observation, simple linear regression      76—82 159—160 218—219
 Predictor variable      25 28
 Probit transformation      366
 Product operator      2
 Pure error mean square      127—128
 Pure error sum of squares      127
 Quadratic effect coefficient      301
 Quadratic form      215
 Quadratic response function      301
 Quadratic response function, estimation of maximum or minimum      317—319
 Quantal response      354
 random matrix      205—208
 Random vector      205—208
 Rank of matrix      200
 Reduced model      95
 Regression      see "Mean response" "Prediction "Regression "Regression "Regression
 Regression coefficients, multiple regression      227—229
 Regression coefficients, multiple regression, danger in simultaneous tests      278—282
 Regression coefficients, multiple regression, interval estimation      243
 Regression coefficients, multiple regression, joint estimation      243
 Regression coefficients, multiple regression, point estimation      238—239 263
 Regression coefficients, multiple regression, tests concerning      243 285—286 289—293
 Regression coefficients, multiple regression, variance-covariance matrix of      242 263
 Regression coefficients, partial      229
 Regression coefficients, simple linear regression      33—34
 Regression coefficients, simple linear regression, interval estimation      65—67 69—70
 Regression coefficients, simple linear regression, joint estimation      147—154 217
 Regression coefficients, simple linear regression, point estimation      36—40 50—51 167—172 210—212 219—220
 Regression coefficients, simple linear regression, tests concerning      67—68 71—72 92—94
 Regression coefficients, simple linear regression, variance-covariance matrix of      216—217
 Regression coefficients, standardized      261—263
 Regression curve      27—28 see
 Regression function      27—28
 Regression function, comparison of two or more      343—45
 Regression function, confidence band, simple linear regression      154—157
 Regression function, confidence region, multiple regression      244
 Regression function, estimated regression function      41—43
 Regression function, test for fit      123—132 245—246
 Regression function, test for regression relation      92—93 240—241
 Regression function, transformations to linearize      134—141
 Regression mean square      88
 Regression model      26—29
 Regression model, effect of measurement errors      164—167
 Regression model, first-order autoregressive      448—450
 Regression model, general linear      230—234 237—238
 Regression model, multiple      226—230
 Regression model, multiple in matrix terms      237—238
 Regression model, multiple with interaction effects      232—237 335—339
 Regression model, nonlinear      468—469
 Regression model, polynomial      300—305
 
 | 
 |  |  |  | Ðåêëàìà |  |  |  |  |  |