Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Neter J., Kutner M.H., Wasserman W. — Applied Linear Regression Models
Neter J., Kutner M.H., Wasserman W. — Applied Linear Regression Models



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Applied Linear Regression Models

Авторы: Neter J., Kutner M.H., Wasserman W.

Аннотация:

Applied Linear Regression Models was listed in the newsletter of the Decision Sciences Institute as a classic in its field and a text that should be on every member's shelf. The third edition continues this tradition. It is a successful blend of theory and application. The authors have taken an applied approach, and emphasize understanding concepts; this text demonstrates their approach trough worked-out examples. Sufficient theory is provided so that applications of regression analysis can be carried out with understanding. John Neter is past president of the Decision Science Institute, and Michael Kutner is a top statistician in the health and life sciences area. Applied Linear Regression Models should be sold into the one-term course that focuses on regression models and applications. This is likely to be required for undergraduate and graduate students majoring in allied health, business, economics, and life sciences.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1983

Количество страниц: 720

Добавлена в каталог: 27.10.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Regression model, residual analysis for aptness      111—22
Regression model, scope of      30 261
Regression model, second-order autoregressive      460
Regression model, selection of independent variables, all possible regressions      421—429
Regression model, selection of independent variables, backward elimination      435—436
Regression model, selection of independent variables, forward selection      435
Regression model, selection of independent variables, ridge regression      436
Regression model, selection of independent variables, stepwise regression      430—435
Regression model, simple linear in matrix terms      208—210
Regression model, simple linear, error term distribution unspecified      31—35
Regression model, simple linear, normal error terms      48—49
Regression model, simple linear, through origin      160—164
Regression model, simple linear, X is random      83—84
Regression model, uses of      30—31
Regression sum of squares      86
Regression sum of squares, decompositions      284—286
Regression surface      227—228
Regression, through origin      160—164
Replication      124
Residual      43—44
Residual analysis      111—122
Residual in terms of hat matrix      220—221
Residual mean square      47
Residual plot      111—113
Residual sum of squares      47
Residual, deleted      405—406
Residual, properties of      110—111
Residual, standardized      110
Residual, studentized      405
Residual, studentized deleted      406
Residual, variance-covariance matrix of      221 402
Response      41
Response function      see "Regression function"
Response surface      227—228
Response variable      25 28
Response, binary or quantal      354
Restricted model      95
Ridge regression      394—400
Ridge regression, use for selecting independent variables      436
Ridge trace      396—397
Roundoff errors in least squares calculations      377—378
Row vector      188
SAS      259
scalar      192
Scalar matrix      197—198
Scatter diagram      25
Scatter plot      25
Scheffe joint estimation procedure for inverse predictions      174
Scheffe joint estimation procedure for prediction of new observations      159—160 246
Scope of model      30 261
Second-order autoregressive error model      460
Second-order regression model      300—301 303—305 see
Selection of independent variables      29 417—419
SENIC data set      533—36
Serial correlation      444
Simple linear regression model      31 see
Singular matrix      201
SMSA data set      537—541
SPSS      52
Square matrix      187
Standard normal variable      7
Standardized regression coefficient      261—263
Standardized residual      110
Statement confidence coefficient      150
Statistical relation      25—26
Stepwise regression selection procedure      430—435
Studentized deleted residual      406
Studentized residual      405
Sufficient estimator      9
Sum of squares      46
Sum of squares, as quadratic form      215—216
Summation operator      1—2
Symmetric matrix      196
t distribution      8
t distribution, table of percentiles      518—519
t test power function charts      528—529
Third-order regression model      302 see
Total deviation      87
Total sum of squares      85
Total uncorrected sum of squares      90
Transformations of variables      134—141
Transpose of matrix      188—189
Trial      25
Unbiased estimator      9
Unrestricted model      95
Variance inflation factor      391—393
Variance of error term      31 46—48 50
Variance of function of random variables      5—6
Variance of random variable      4
Variance, estimation of, ratio of two      17—18
Variance, estimation of, single      16
Variance, test concerning, ratio of two      18—19
Variance, test concerning, single      16—17
Variance-covariance matrix      206—207
Variance-covariance matrix of regression coefficients      216—217 220 242 263
Variance-covariance matrix of residuals      221 402
Vector      187—188
Vector with all elements 0      198—199
Vector with all elements 1      198
Vector, random      205—208
Weighted least squares      167—172 219—220 263
Westwood Company      25—26
Working — Hotelling confidence region, multiple regression      244
Working — Hotelling confidence region, simple linear regression      154—58
Working — Hotelling confidence region, use for joint estimation of mean responses      157—158 245
z' transformation      503
z' transformation, table      532
Zarthan Company      247
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте