|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: electromagnetic field
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Wolf E.L. — Nanophysics and nanotechnology. An introduction to modern concepts in nanoscience | | Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 58, 95, 165, 427 | Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 200—222, 326—335 | Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 200—222, 326—335 | Ward R.S., Wells R.O. — Twistor geometry and field theory | 242, 244, 245 | Goldstein H., Poole C., Safko J. — Classical mechanics | 31, 51, 55, 275, 571, 587 | Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 537, 543 | Naber G.L. — The geometry of Minkowski spacetime: an introduction to the mathematics of the special theory of relativity | 100, 126, 129 197 | Mukamel S. — Principles of Nonlinear Optical Spectroscopy | 79 | Edwards H. — Advanced Calculus: A Differential Forms Approach | 343 | Strauss W.A. — Partial Differential Equations: An Introduction | 22, 39, 339 | Roman P. — Introduction to quantum field theory | 17, 23, 40 | Raabe D. — Computational materials science | 268 | Greiner W. — Quantum mechanics. An introduction | 19, 29, 205 ff., 339 | Aitchison I.J.R., Hey A.J.G. — Gauge theories in particle physics. Volume 1: from relativistic quantum mechanics to QED | see “Field, electromagnetic” | Heusler M., Goddard P. — Black Hole Uniqueness Theorems | 57, 58, 60 | Thouless D.J. — Topological quantum numbers in nonrelativistic physics | 5, 16, 19, 35, 36, 53 | Eschrig H. — The Fundamentals of Density Functional Theory | 161 | Born M. — Natural philosophy of cause and chance (The Waynflete lectures) | 22—26, 138 | Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.1) | 2—2, 2—5, 10—9 | Planck M. — Theory of electricity and magnetism,: Being volume III of Introduction to theoretical physics | 10 | Mukamel S. — Principles of nonlinear spectroscopy | 79 | DeWitt B.S. — The global approach to quantum field theory (Vol. 1) | 902ff | Konopinski E.J. — Electromagnetic fields and relativistic particles | 1 | Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 69, 189 | Poisson E. — A relativists toolkit | 32, 152, 157, 176, 177, 214, 216, 222 | Bleecker D. — Gauge Theory and Variational Principles | 33, 145 | Tung W.K. — Group Theory in Physics: An Introduction to Symmetry Principles, Group Representations, and Special Functions | 117, 147, 189, 327 | Adair R.K. — The Great Design: Particles, Fields, and Creation | 128—139, 208, 325 | Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.2) | I-2-2, I-2-5, I-10-9 | Ludvigsen M. — General relativity. A geometric approach | 49 | Schiff L.I. — Quantum mechanics | 136, 241—242, 249—254 | Visser M. — Lorentzian wormholes. From Einstein to Hawking | 22, 56, 82, 309, 349 | Logan J.D. — Invariant Variational Principles | 93, 98—104, 107—109, 146—147, 160 | Bishop O. — Electronics: A First Course | 192 | Englert B.G. (Ed) — Quantum Mechanics | 437 | Birrell N.D., Davies P.C.W. — Quantum Fields in Curved Space | 19—20, 31, 80, 85, 97—102, 154, 171, 179—180, 222, 224, 261 | Griffits D. — Introduction to elementary particles | 225 | Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians (Vol. 1) | 145, 201ff, 540, 1193 | Cohen-Tannoudji C., Dupont-Roc J., Grynberg G. — Photons and atoms: introduction to quantum electrodynamic | (see also “Expansion in normal variables”, “External field”) | Wolf E.L. — Nanophysics and nanotechnology: an introduction to modern concepts in nanoscience | 52 | Bjorken J.D., Drell S.D. — Relativistic Quantum Fields | 3 | Jaeger F.M. — Lectures on the principle of symmetry and its applications in all natural sciences | 95, 96, 106 | Avery J. — Creation and Annihilation Operators | 16, 25, 57, 97, 106, 145, 147, 148, 163—167 | Stahl A. — Physics with tau leptons | 16, 25, 57, 97, 106, 145, 147, 148, 163—167 | Schulman L.S. — Techniques and applications of path integration | 320—323 | Halzen F., Martin A.D. — Quarks and Leptons: An Introductory Course in Modern Particle Physics | 84, 133 | Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 162 | Aminov Y. — Differential Geometry and Topology of Curves | 86 | Rosenfeld B. — Geometry of Lie Groups | 217 | Scully M.O., Zubairy M.S. — Quantum optics | 2, 146, 166 | Weyl H. — Space, Time, Matter | 64 | Rose M.E. — Elementary theory of angular momentum | 99, 127—131 | Sachs R.K., Wu H. — General relativity for mathematicians | 74—76 | Accardi L., Lu Y.G., Volovich I. — Quantum Theory and Its Stochastic Limit | 253 | Greene B. — The elegant univerce | 23, 24, 377 | Phillips P. — Advanced Solid State Physics | 258 | Woodhouse N.M.J. — Geometric quantization | 82, 134 | Martin J Buerger — Crystal Structure Analysis | 25—26 | Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 142—143, 398, 580—583 | Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 3, 12 | Barnett S.M., Radmore P.M. — Methods in Theoretical Quantum Optics | 1, 10, 13, 14, 24, 87 | Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 263, 271, 336 | Wilson W. — Theoretical physics - Relativity and quantum dynamics | 40 | Morse P.M. — Methods of theoretical physics | 200—222, 326—335 | Henley E.M., Thirring W. — Elementary Quantum Field Theory | 8, 28, 46, 60, 61, 90, 96—98, 100, 101, 125, 166, 232—248 | Weinreich G. — Geometrical vectors | 93—94 | Choquet-Bruhat Y. — General Relativity and the Einstein Equations | 45 | Anderssen R.S., de Hoog F.R., Lukas M.A. — The application and numerical solution of integral equations | 223 | Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians | 145, 201ff, 540, 1193 | Deligne P., Etingof P., Freed D. — Quantum fields and strings: A course for mathematicians, Vol. 2 (pages 727-1501) | 145, 201ff, 540, 1193 | Biedenharn L.C., Louck J.D. — Angular momentum in quantum physics | 284 | Anderson J.L. — Principles of Relativity Physics | 46, 227, 257, 258 | Synge J.L., Griffith B.A. — Principles of Mechanics | 381—403, 412, 413 | Greiner W. — Relativistic quantum mechanics. Wave equations | 41 | Adams S. — Relativity: An Introduction to Space-Time Physics | 17, 20 | Wald R.M. — General Relativity | 64, 70, see also "Maxwell's equations" | Synge J.L. — Relativity: The Special Theory | 317ff, 387ff | Abrikosov A.A., Gorkov L.P., Dzyalosliinski I.E. — Methods of quantum fields theory in statistical physics | 251 | Walls D.F., Milburn G.J. — Quantum Optics | 7 | Greiner W. — Classical mechanics. Systems of particles and hamiltonian dynamics | 327 | Zeidler E. — Oxford User's Guide to Mathematics | 517 | Rektorys K. — Survey of Applicable Mathematics.Volume 2. | I 203 | Hickman M. (Ed), Mirchandani P. (Ed) — Computer-Aided Systems in Public Transport | 1 | Abrikosov A.A., Gîr'kov L.P., Dzyalosiiinskh I.Yk. — Quantum field theoretical methods in statistical physics | 251 | Feynman R., Leighton R., Sands M. — Lectures on Physics 2 | I-2-2, I-2-5, I-10-9 | Flanders H. — Differential Forms with Applications to the Physical Sciences | 16, 44 ff | Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 292 | Blin-Stoyle R.J. — Eureka! Physics of particles, matter and the universe | 22 | Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 263, 271, 336 | Mezey P.G. — Shape In Chemistry: An Introduction To Molecular Shape And Topology | 105 |
|
|