|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Boundary layer
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Agarwal R.P. — Difference Equations and Inequalities. Theory, Methods and Applications. | 95 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 205.C | Guillemin V., Sternberg S. — Geometric Asymptotics | 441, 467 | Ames W.F. — Numerical methods for Partial Differential Equations | 82 | Olver P.J. — Equivalence, Invariants and Symmetry | 198 | Finlayson B.A. — Numerical Methods for Problems With Moving Fronts | 11, 305, 434 | Wesseling P. — An introduction to multigrid methods | 210 | Wesseling P. — Principles of computational fluid dynamics | 2, 32, 70, 75, 76, 111, 116, 120, 127, 142, 224, 532, 567 | Miranker W.L. — Numerical Methods for Stiff Equations and Singular Perturbation Problems | 6, 90, 93, 94, 104 | Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 3, Fluid dynamics) | 3, 10, 16, 108, 110, 171, 180, 192, 197, 198, 200, 202, 206, 209, 210, 222 | Georgescu A. — Asymptotic Treatment of Differential Equations | 50, 51, 63, 70—81, 74, 89, 91, 115—144, 143, 200—212 | O'Malley R.E. — Introduction to Singular Perturbations | 8 | Hinch E.J. — Perturbation Methods | 52, 55 | Nayfeh A.H. — Perturbation Methods | 18, 23, 79, 111, 112, 147, 233 | Lee G.H.W., Chu V.H. — Turbulent Jets and Plumes : A Lagrangian Approach | 60 | Taberling P. (ed.), Cardoso O. (ed.) — Turbulence: a tentative dictionary | 36—38, 88—91, 97, 98, 129 | Chorin A., Marsden J. — A Mathematical Introduction to Fluid Mechanics | 67, 68 | Bloomer J.J. — Practical fluid mechanics for engineering applications | 265 2 | Batchelor G.K. — An Introduction to Fluid Dynamics | 302 | Debnath L. — Nonlinear water waves | 24, 71, 76 | Bellman R. — Methods of nonlinear analysis (Vol. 1) | 14 | Poprawe R. (ed.), Loosen P., Bachmann F. — High Power Diode Lasers: Technology and Applications | 406 | Boyd J.P. — Chebyshev and Fourier Spectral Methods | 57 | Lamb H. — Hydrodynamics | 684, 687, 689 | Friedlander S. (Ed), Serre D. (Ed) — Handbook of Mathematical Fluid Dynamics, Vol. 4 | 417, 676 | Lin C.C., Segel L.A. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 288 | Ito K. — Encyclopedic Dictionary of Mathematics | 205.C | Dittrich T. (ed.), Hanggi P. (ed.), Ingold G.-L. (ed,) — Quantum transport and dissipation | 321 | Chipot M., Quittner P. — Stationary Partial Differential Equations, Vol. 1 | 301, 316, 339, 340, 357 | Cebeci T., Platzer M., Chen H. — Analysis of Low-Speed Unsteady Airfoil Flows | 2, 4, 5, 6, 16, 28, 31, 59, 77, 94, 96, 98, 107, 108, 127, 136 | Zauderer E. — Partial Differential Equations of Applied Mathematics | 647, 664, 670, 682 | Ewald P.P. — The physics of solids and fluids | 275 | Schercliff J.A. — Vector Fields | 210, 275 | Thevenin D. (Ed), Janiga G. (Ed) — Optimisation in Computational Fluid Dynamics | 169, 272 | Ting L., Klein R. — Viscous Vortical Flows (Lecture Notes in Physics) | 29, 176, 187 | Kyle T.G. — Atmospheric transmission, emission and scattering | 19 | Fletcher C.A. — Computational Techniques for Fluid Dynamics. Vol. 1 | 35, 293 | Munk M.M. — Fundamentals Of Fluid Dynamics For Aircraft Designers | 139 | Sanders J.A., Verhulst F. — Averaging methods in nonlinear dynamical systems | 102—104, 161 | Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.2) | II-41-9 | McHardy J., Sawan S.P. — See Inside! Supercritical Fluid Cleaning by Samuel P. Haber: Book Cover * o Table of Contents Supercritical Fluid Cleaning: Fundamentals, Technology and Applications | 31, 71, 73, 74, 274 | Hayes W.D., Probstein R.F. — Hypersonic Flow Theory | 7, 26, 284—374 | Ascher U.M., Russell R.D., Mattheij R.M. — Numerical Solution of Boundary Value Problems for Ordinary Differential Equations | 8 | Lai W.M., Rubin D., Krempl E. — Introduction to continuum mechanics | 399 | Sedov L. — Similarity and Dimensional Methods in Mechanics | 127 | Mattheij R.M.M., Molenaar J. — Ordinary Differential Equations in Theory and Practice (Classics in Applied Mathematics) (No. 43) | 202 | Guillemin V. — Geometric Asymptotics (Mathematical Surveys and Monographs Number 14) | 441, 467 | Pope S.B. — Turbulent Flows | 265, 298-322 | Kivelson Margaret G., Russell Christopher T. — Introduction to Space Physics (Cambridge Atmospheric & Space Science Series) | 259—265 | Chan Man Fong C.F., De Kee D., Kaloni P.N. — Advanced Mathematics for Engineering and Sciences | 176, 525 | Olver P.J., Shakiban C. — Applied linear. algebra | 640 | Strelkov S.P. — Mechanics | 378, 392ff | Holmes P., Lumley J.L., Berkooz G. — Turbulence, Coherent Structures, Dynamical Systems and Symmetry | 9—11, 45, 63—82, 117—120, 275—346, 355—360, 368—372 | Mattheij R.M.M. — Partial differential equations: modeling, analysis, computation | 92, 476 | Estrada R., Kanwal R.P. — A distributional approach to asymptotics theory and applications | 410 | Kundt W. — Astrophysics. A Primer | 34 | Bernard P.S., Wallace J.M. — Turbulent Flow: Analysis, Measurement and Prediction | 112, 121—122, 142—152, 157—163, 248, 312, 354—359, 423-424 | Naidu D.S., Rao A.K. — Singular Perturbation Analysis of Discrete Control Systems | 1, 3, 13, 70, 90, 122 | Mihalas D., Mihalas B.W. — Foundations of Radiation Hydrodynamics | 77, 94 | Grasman J. — Asymptotic methods for relaxation oscillations and applications | 12, 25 | Flogge S. (ed.) — Encyclopedia of Physics. Thermodynamics of Gases | 253, 263, 265, 288 | Tannehill J.C., Pletcher R.H., Anderson D.A. — Computational Fluid Mechanics and Heat Transfer | 285—286 | van der Giessen E., Wu T. Y. — Advances in Applied Mechanics, Volume 34 | 319, 320, 348, 366, 377 | Sone Y. — Molecular Gas Dynamics Theory, Techniques, and Applications | see "Knudsen layer", "S layer", "Suction boundary layer", "Viscous boundary layer" | Roth A.C., Baird R.J. — Small gas engines | 127 | Johnson C. — Numerical solution of partial differential equations by the finite element method | 175 | Batchelor G. — Introduction to Fluid Dynamics | 302 | Sutton O.G. — Mathematics in action | 140, 157 | Guckenheimer J., Holmes Ph. — Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Vol. 42 | 69 | Astarita G., Marrucci G. — Principles of Non-Newtonian Fluid Mechanics | 239—41, 256—61, 264, 265 | Goldsmid H.J. (ed.) — Problems in solid state physics | 2.3 | Acheson D.J. — Elementary Fluid Dynamics | 26 | Hugh D. Young, Roger A. Freedman — University physics with modern physics | 473 | Rubinstein I. — Electro-diffusion of ions | 86 | Ciarlet P.G. — Mathematical elasticity. Volume II: Theory of plates | 102, 103 | Lemm J.M. — Mathematical elasticity. Theory of shells | 351, 362, 368, 371, 374 | Strang G. — Introduction to Applied Mathematics | 164, 165, 466 | Oertel H. — Prandtl's Essentials of Fluid Mechanics (Applied Mathematical Sciences) | 362, 397, 409 | Anderson D.F., Eberhardt S. — Understanding flight | 22, 80 | Krasnov N.F. — Aerodynamics. Part 1. Fundamentals of theory. Aerodynamics of an Airfoil and a Wing | 34ff | Lee A. — Mathematics Applied to Continuum Mechanics | 77, 105—114 | Gerald C.H. — Electro–optical imaging iystem performance | 263 | Bruno A.D., Fen L.S. — Power geometry in algebraic and differential equations | 308 | Fung Y. — A First Course in Continuum Mechanics: for Physical and Biological Engineers and Scientists | 244—249 | Mattheij R.M. — Partial differential equations | 92, 476 | Groesen E., Molenaar J. — Continuum Modeling in the Physical Sciences (Monographs on Mathematical Modeling and Computation) | 126 | Feynman R., Leighton R., Sands M. — Lectures on Physics 2 | II-41-9 | Ascher U., Petzold L. — Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations | see "Layer" | Bangerth W., Rannacher R. — Adaptive Finite Element Methods for Differential Equations | 55, 90 | Petzold L. — Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations | see "Layer" | Tannehill J.C., Anderson D.A., Pletcher R.H. — Computational Fluid Mechanics and Heat Transfer | 285—286 | Melissinos A.C. — Principles of modern technology | 250 | Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 288 | Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 288 | Lin C., Segel L. — Mathematics applied to deterministic problems in the natural sciences | 288 | Lyndon R., Schupp P. — Combinatorial Group Theory (Classics in Mathematics) | 260, 263 | Ferziger J.H., Kaper H.G. — Mathematical theory of transport processes in gases | 154, 158 | Georgescu A. — Asymptotic Treatment of Differential Equations (Applied Mathematics) | 50, 51, 63, 70—81, 74, 89, 91, 115—144, 143, 200—212 |
|
|