| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Guillemin V., Pollack A. — Differential topology | 3 |
| Spiegel M.R. — Mathematical Handbook of Formulas and Tables | 11 |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 90.A |
| Berger M. — A Panoramic View of Riemannian Geometry | 162 |
| Walrath K., Campione M., Huml A. — JFC Swing Tutorial, The: A Guide to Constructing GUIs | |
| Meirovitch L. — Methods of analytical dynamics | See Reference system or frame |
| Felsager B. — Geometry, particles and fields | 254 |
| Hicks N. — Notes on differential geometry | 2 |
| Buss S.R. — 3-D computer graphics. A mathematical introduction with openGL | 4 |
| Deitel H.M. — Visual C# How to Program | |
| Ward R.S., Wells R.O. — Twistor geometry and field theory | 48, 76, 82, 123, 248, 456, 478, 481 |
| Barnsley M. — Fractals Everywhere | 69, 70, 73, 179, 193, 240, 297 |
| Blanchette J., Summerfield M. — C++ GUI Programming with Qt 3 | |
| Blanchette J., Summerfield M. — C++ GUI Programming with Qt 4 | |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 313, 392, 415 |
| Torretti R. — Relativity and Geometry | see “Chart” |
| van den Essen A. — Polynomial automorphisms and the Jacobian conjecture | 5, 70 |
| Reid M., Szendroi B. — Geometry and Topology | xiv, 4 |
| Milnor J.W. — Topology from the Differentiable Viewpoint | 1 |
| Coffin D. — Algebra and Pre-Calculus on the HP 48G/GX | 220 |
| Veblen O. — The Foundation of Differential Geometry | 22 |
| Weyl H. — The Classical Groups: Their Invariants and Representations, Vol. 1 | 6 |
| Ellis G. — Rings and Fields | 96, 102 |
| Aczel A.D. — Descartes' Secret Notebook: A True Tale of Mathematics, Mysticism, and the Quest to Understand the Universe | 3—5, 57, 69—71, 79, 121, 160, 161, 162—166, 228, 235 |
| Hirschfield J.W. — Projective Geometries over Finite Fields | 31—32 |
| Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding | see local coordinates |
| Spivak M. — Calculus | 57 |
| Poeschel J. — Inverse Spectral Theory | 149 |
| Lang S.A. — Undergraduate Analysis | 514 |
| Schouten J.A., van der Kulk W. — Pfaffs Problem and Its Generalizations | 30, 31 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 90.A |
| Jauch J.M. — Foundations of quantum mechanics | 22 |
| Singer I.M., Thorpe J.A. — Lecture Notes on Elementary Topology and Geometry | 98 |
| Guimaraes A.P. — Magnetism and Magnetic Resonance in Solids | 196, 198, 261 |
| Carmo M.P. — Differential geometry of curves and surfaces | 52 |
| Haas A.E. — Introduction to theoretical physics, Vol. 1 and 2 | 6 |
| Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 7 |
| Bleecker D. — Gauge Theory and Variational Principles | 7 |
| Halmos P.R. — Finite-Dimensional Vector Spaces | 10 |
| Stewart J. — Advanced general relativity | 1 |
| O'Neill B. — Elementary differential geometry | 158(Ex. 9), 276—277 |
| De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 17ff |
| Sanders J.A., Verhulst F. — Averaging methods in nonlinear dynamical systems | 137, 216, 217, 228 |
| O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 1—3 |
| Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 28, 158 |
| Guggenheimer H.W. — Differential Geometry | 200 |
| Ludvigsen M. — General relativity. A geometric approach | 82 |
| Pope S.B. — Turbulent Flows | see Cartesian coordinate |
| Kempthorne O. — Design and Analysis of Experiments, Introduction to Experimental Design, Vol. 1 | 519 |
| Farin G., Hansford D. — Practical Linear Algebra: A Geometry Toolbox | 2, 172 |
| Tamura I. — Topology of lie groups, I and II | 90 |
| Barrels R.H., Beatty J.C. — An Introduction to Splines for use in Computer Graphics and Geometric Modeling | 63, 77 |
| Kompaneyets A.S., Yankovsky G. — Theoretical Physics | 11 |
| O'Neill B. — The Geometry of Kerr Black Holes | 2 |
| Berry M. — Principles of cosmology and gravitation | 23, 47 |
| Weyl H. — Philosophy of mathematics and natural science | 75 |
| Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 7, 20, 62, 88—90, 97, 439, 442, 443 |
| Montenbruck O. — Practical Ephemeris Calculations | 3ff |
| Beutler G. — Methods of Celestial Mechanics: Volume I: Physical, Mathematical, and Numerical Principles | I 49 |
| Haller G. — Chaos Near Resonance | 371 |
| Bishop R.L., Crittenden R.J. — Geometry of manifolds | 2 |
| Farin G. — Curves and surfaces for computer aided geometric design | 12 |
| Moh T.T. — Algebra | 187 |
| Friedlander F.G. — The Wave Equation on a Curved Space-Time | 3 |
| Beaumont R.A., Pierce R.S. — The Algebraic Foundations of Mathematics | 230, 238 |
| Goertzel G. — Some Mathematical Methods of Physics | see Basis |
| Hermann R. — Differential geometry and the calculus of variations | 25 |
| Amari Sh. — Differential Geometrical Methods in Statistics (Lecture notes in statistics) | 12 |
| Finkbeiner D.T. — Introduction to Matrices and Linear Transformations | 35—36 (see also Basis) |
| Rogers L. — Its ONLY Rocket Science. An Introduction in Plain English (Astronomers Universe) | 133, 134—139, 307—308 |
| Astarita G., Marrucci G. — Principles of Non-Newtonian Fluid Mechanics | 6, 7, 25, 98 |
| Zhang K., Li D. — Electromagnetic Theory for Microwaves and Optoelectronics | 165 |
| Jauch J.M. — Foundations Of Quantum Mechanics | 22 |
| Mario Bunge — Foundations of Physics | 103—105, 163, 215—216, 230 |
| Ugarov V.A. — Special Theory of Relativity | 12 |
| Lang S. — Undergraduate analysis | 514 |
| Moh T.T. — Algebra | 187 |
| Weinreich G. — Geometrical vectors | 5, 66—69 |
| Hsiung C.-C. — A first course in differential geometry | 151 |
| Hirsch M.W., Smale S. — Differential Equations, Dynamical Systems, and Linear Algebra | 36 |
| Rapoport A. — N-person game theory: Concepts and Applications | 35 |
| Rektorys K. — Survey of Applicable Mathematics.Volume 2. | I 167, I 195 |
| Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 11—15 |
| Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 154 |
| Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 111 |
| Rice J. — Matrix computations and mathematical software | 6 |
| Bunge M. — Foundations of Physics | 103—105, 163, 215—216, 230 |
| Suter D. — The physics of laser-atom interactions | 120 |
| Davies P. — The New Physics | 72—74 |
| Berry M.V. — Principles of Cosmology and Gravitation | 23, 47 |
| Bourg D. — Physics for Game Developers | 4—5 |
| Wiedemann H. — Particle Accelerator Physics I: Basic Principles and Linear Beam Dynamics | 76 |
| Sagle A. A. — Introduction to Lie groups and Lie algebras | 41 |