Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 91 |
Guillemin V., Pollack A. — Differential topology | 161 |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 478 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 133, 139 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 44, 44—46 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 197.C |
Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 514 |
Allen R.L., Mills D.W. — Signal analysis. Time, frequency, scale and structure | 163 |
Lipschutz Seymour — Schaum's Outline of Theory and Problems of Linear Algebra (Schaum's Outlines) | 209 |
Latrve D.R., Kreider D.L., Proctor T.G. — Hp-48G/Gx Investigations in Mathematics | 475 |
Hoffman K., Kunze R. — Linear algebra | 281 |
Meyer C.D. — Matrix analysis and applied linear algebra | 98 |
Eisenbud D. — Commutative algebra with a view toward algebraic geometry | 466 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 465 |
Rudin W. — Real and Complex Analysis | 85 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 465 I |
Lee J.M. — Introduction to Smooth Manifolds | 422 |
Millman R.S., Parker G.D. — Elements of Differential Geometry | 3 |
Mimura M., Toda H. — Topology of Lie Groups, I and II | 18 |
Newman M. — Integral Matrices | 85 |
Naber G.L. — The geometry of Minkowski spacetime: an introduction to the mathematics of the special theory of relativity | 8 |
Opechowski W. — Crystallographic and metacrystallographic groups | 97, 521 |
Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 176 |
Rotman J.J. — An Introduction to the Theory of Groups | 63, 243 |
Artin M. — Algebra | 126, 241, 252 |
Douglas R.G. — Banach algebra techniques in operator theory | 74—75 |
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 124 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 348, 353, 415 |
Halmos P.R. — Hilbert Space Problem Book | 7 |
Kohonen T. — Self-organizing maps | 32 |
Prugovecki E. — Quantum Mechanics in Hilbert Space | 36 |
Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 6 |
Gohberg I., Goldberg S. — Basic Operator Theory | 26 |
Chui C.K., Chan A.K., Liu C.S. — Wavelet Toolware: Software for Wavelet Training | 1, 18, 20 |
Greiner W. — Quantum mechanics. An introduction | 42 |
Shankar R. — Basic Training In Mathematics | 149, 239 |
O'Donnel P. — Introduction to 2-Spinors in General Relativity | 105 |
Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding | 293 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 3 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 3 |
Geroch R. — Mathematical physics | 283 |
Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 44, 44—46 |
Atkinson K.E., Han W. — Theoretical Numerical Analysis: A Functional Analysis Framework | 28 |
Sandor J., Mitrinovic D.S., Crstici B. — Handbook of Number Theory II | 185 |
Khuri A.I. — Advanced calculus with applications in statistics | 24 |
Stone C.J.D. — Course in Probability and Statistics | 461 |
James G.D. — The Representation Theory of the Symmetric Groups | 115 |
Brickell F., Clark R.S. — Differentiable Manifolds | 161 |
Rall D. — Computational Solution to Nonlinear Operator Equations | 26 |
Antman S.S. — Nonlinear Problems of Elasticity | 372 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 129, 137, 335, 370 |
Ito K. — Encyclopedic Dictionary of Mathematics | 197.C |
Rudin W. — Real and complex analysis | 85 |
Staffans O. — Well-Posed Linear Systems | 110, 111, 136, 207, 283, 284, 641 |
Lin I.H. — Geometric Linear Algebra. Vol. 1 | 176, 461, 613, 621, 625, 775, 776 |
Robinson D.J.S. — A Course in Linear Algebra with Applications | 253 |
Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 183, 296 |
Halmos P.R. — Finite-Dimensional Vector Spaces | 128 |
Blyth T.S., Robertson E.F. — Further Linear Algebra | 17 |
Bachman G., Beckenstein E. — Fourier And Wavelet Analysis | 107 |
Stakgold I. — Green's Functions and Boundary Value Problems | 269 |
Phillips G.M. — Interpolation and Approximation by Polynomials | 52 |
De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 43 (see also "Tetrad") |
Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 91 |
Bogachev V.I. — Measure Theory Vol.2 | I: 258 |
Strichartz R.S. — The way of analysis | 366 |
Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 143 |
Tung W.K. — Group Theory in Physics: An Introduction to Symmetry Principles, Group Representations, and Special Functions | 303 |
Bamberg P.G., Sternberg Sh. — A Course in Mathematics for Students of Physics: Volume 1 | 127 |
O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 50 |
Goswami J.C., Chan A.K. — Fundamentals of Wavelets : Theory, Algorithms, and Applications | 11 |
Young R.M. — An Introduction to Nonharmonic Fourier Series | 6 |
Fenn R. — Geometry | 161 |
Betten J. — Creep Mechanics | 10, 16 |
Farin G., Hansford D. — Practical Linear Algebra: A Geometry Toolbox | 271 |
Petrou M., Sevilla P.G. — Image Processing: Dealing with Texture | 465—472, 483 |
Fuhrmann P.A. — A Polynomial Approach to Linear Algebra | 154 |
Olver P.J., Shakiban C. — Applied linear. algebra | 218, 219, 223, 228, 230, 236, 240, 257, 280, 348, 413, 418, 428, 435, 641 |
Bamberg P.G., Sternberg S. — A Course in Mathematics for Students of Physics, Vol. 1 | 127 |
Clemens C.H. — Scrapbook of Complex Curve Theory | 165 |
Simmons G.F. — Introduction to topology and modern analysis | 293 |
O'Neill B. — The Geometry of Kerr Black Holes | 26 |
Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 135-137 |
Siegel W. — Fields | IA4 |
Dunn F., Parberry I. — 3D Math Primer for Graphics and Game Development | 134 |
Mac Lane S., Birkhoff G.D. — Algebra | 356, 370 |
Kurosh A. — Higher Algebra | 208 |
Saxe K. — Beginning functional analysis | 77 |
Trefethen L.N., Bau D. — Numerical Linear Algebra | 36 |
Sachs R.K., Wu H. — General relativity for mathematicians | 2, 5 |
Stewart G.W., Sun J. — Matrix perturbation theory | 8 |
Curtis M.L. — Abstract Linear Algebra | 118 |
Moh T.T. — Algebra | 237 |
Carl D. Meyer — Matrix Analysis and Applied Linear Algebra Book and Solutions Manual | 298 |
Christensen O., Christensen K.L. — Approximation Theory: From Taylor Polynomials to Wavelets | 64 |
Hyers D.H., Isac G., Rassias T.M. — Stability of functional equations in several variables | 180 |
Socha L. — Linearization Methods for Stochastic Dynamic Systems | 17 |
Bridges D.S. — Foundations Of Real And Abstract Analysis | 247 |
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 75 |
Goffman C. — Calculus of several variables | 6 |
Stanley R.P. — Enumerative Combinatorics: Volume 2 | (see Basis, orthonormal) |
Michel A., Liu D. — Qualitative analysis and synthesis of recurrent neural networks | 367 |
Brickell F., Clark R.S. — Differentiable manifolds | 161 |
Valentine F.A. — Convex Sets | 208 |
Kreyszig E. — Introductory functional analysis with applications | 168 |
Shilov G.E. — An introduction to the theory of linear spaces | 142 |
Hefferon J. — Linear algebra | 258 |
Aliprantis C. — Principles of real analysis | 298 |
Antsaklis P.S., Michel A.N. — Linear Systems | 439 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 31, 287 |
Goswami J., Chan A. — Fundamentals of Wavelets. Theory, Algorithms, and Applications | 11 |
Elden L. — Numerical Linear Algebra and Applications in Data Mining | 36 |
Audin M. — Geometry | 52 |
Hildebrand F.B. — Methods of Applied Mathematics | 36 |
Audin M. — Geometry | 52 |
Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods | 25—26 |
Gelbaum B.R. — Problems in Real and Complex Analysis | s 5.1. 279 |
Douglas R.G. — Banach algebra techniques in operator theory | 74—75 |
Siegel W. — Fields | IA4 |
Stakgold I. — Green's functions and boundary value problems | 269 |
Moh T.T. — Algebra | 237 |
Hsiung C.-C. — A first course in differential geometry | 28 |
Loomis L.H., Sternberg S. — Advanced calculus | 112, 254 |
Tuynman G.M. — Supermanifolds and Supergroups: Basic Theory | 192 |
Hirsch M.W., Smale S. — Differential Equations, Dynamical Systems, and Linear Algebra | 206 |
Percival D., Walden A. — Spectral Analysis for Physical Applications | 160, 362 |
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 10, 15, 453 |
Herstein I.N. — Topics in algebra | 196, 338 |
Zeidler E. — Oxford User's Guide to Mathematics | 629, 842, 1103 |
Horn R.A. — Matrix Analysis | 16 |
Schott J.R. — Matrix Analysis for Statistics | 48—52 |
Rektorys K. — Survey of Applicable Mathematics.Volume 2. | II 338, II 668 |
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 186 |
Beauzamy B. — Introduction to Banach spaces and their geometry | 72 |
Treves F. — Topological Vector Spaces, Distributions And Kernels | 121 |
Peszat S., Zabczyk J. — Stochastic partial differential equations with Levy noise: An evolution equation approach | 356 |
Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 77 |
Geroch R. — Mathematical physics | 283 |
Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 68 |
Heinonen J. — Lectures on Analysis on Metric Spaces | 100 |
Akenine-Möller T. — Real-Time Rendering | see "Basis" |
Demidovich B.P., Maron I.A. — Computational Mathematics | 346 |
Blanchard P., Bruening E. — Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Method | 212 |
Flanders H. — Differential Forms with Applications to the Physical Sciences | 13 ff |
Sexl R., Urbantke H.K. — Relativity, Groups, Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics | 57 |
Shirley P., Ashikhmin M, Gleicher M. — Fundamentals of computer graphics | 27 |
Stakgold I. — Boundary value problems of mathematical physics | 123—124, 127—128, 129 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 31, 287 |
Geroch R. — Mathematical physics | 283 |
Chui C.K. — Wavelets: a mathematical tool for signal processing | 44, 63 |
Proskuryakov I.V. — Problems in Linear Algebra | 206 |
Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | see "basis, orthonormal" |