| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 88 |
| Apostol T.M. — Calculus (vol 1) | 573 |
| Hunter J.K., Nachtergaele B. — Applied Analysis | 130 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 41 |
| Apostol T.M. — Calculus (vol 2) | 27 |
| Wegge-Olsen N.E. — K-Theory and C*-Algebras: a friendly approach | 5.1.2, 15.3.1 |
| Lipschutz Seymour — Schaum's Outline of Theory and Problems of Linear Algebra (Schaum's Outlines) | 207—208, 226 |
| Haerdle W., Simar L. — Applied multivariate statistical analysis | 78 |
| Streater R.S., Wightman A.S. — PCT, Spin and Statistics, and All That | 88 |
| Latrve D.R., Kreider D.L., Proctor T.G. — Hp-48G/Gx Investigations in Mathematics | 473 |
| Saad Y. — Numerical Methods for Large Eigenvalue Problems | 14, 60—61 |
| Golub G.H., van Loan C.F. — Matrix Computations | 69 |
| Saad Y. — Iterative Methods for Sparse Linear Systems | 10 |
| Hoffman K., Kunze R. — Linear algebra | 285 |
| Baker A. — Matrix Groups: An Introduction to Lie Group Theory | 274 |
| Meyer C.D. — Matrix analysis and applied linear algebra | 322, 403 |
| Farkas H., Kra I. — Riemann Surfaces | 30 |
| de Branges L., Rovnyak J. — Square summable power series | 10 |
| Porter D., Stirling D.S.G. — Integral equations: a practical treatment, from spectral theory to applications | 356 |
| Hochstadt H. — Integral Equations (Pure & Applied Mathematics Monograph) | 57 |
| Springer G. — Introduction to Riemann Surfaces | 185 |
| Buss S.R. — 3-D computer graphics. A mathematical introduction with openGL | 314, 328, 329 |
| Lee J.M. — Introduction to Smooth Manifolds | 423 |
| Webster R. — Convexity | 27 |
| Showalter R.E. — Monotone Operators in Banach Space and Nonlinear Partial Differential Equations | 9 |
| Watkins D. — Fundamentals of matrix computations | 240 |
| Naber G.L. — The geometry of Minkowski spacetime: an introduction to the mathematics of the special theory of relativity | 7 |
| Rotman J.J. — An Introduction to the Theory of Groups | 239 |
| Artin M. — Algebra | 243 |
| Douglas R.G. — Banach algebra techniques in operator theory | 71 |
| Birman M.S., Solomyak M.Z. — Spectral Theory of Self-Adjoint Operators in Hilbert Space | 27 |
| Davies E. — Spectral Theory and Differential Operators | 8 |
| Curtain R.F., Pritchard A.J. — Functional Analysis in Modern Applied Mathematics | 58 |
| Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 117 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 348 |
| Merris R. — Combinatorics | 426, 497 |
| Auslender A., Teboulle M. — Asymptotic Cones and Functions in Optimization and Variational Inequalities | 193 |
| Monk P. — Finite Element Methods for Maxwell's Equations | 17 |
| Johnson M., Jha W., Biliotti M. — Handbook of Finite Translation Planes | 764 |
| Kohonen T. — Self-organizing maps | 6 |
| Kanatani K. — Statistical Optimization for Geometric Computation: Theory and Practice | 34 |
| Holt D.F., Bettina E., Eamonn O. — Handbook of Computational Group Theory | 231 |
| Araki H. — Mathematical Theory of Quantum Fields | 199 |
| Gohberg I., Goldberg S. — Basic Operator Theory | 21 |
| Treil S. — Linear Algebra Done Wrong | 124 |
| Rockafellar R.T. — Convex analysis | 5, 121, 203, 336—338 |
| Ratcliffe J.G. — Foundations of Hyperbolic Manifolds | 21 |
| Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding | 298 |
| Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 82 |
| Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 41 |
| Mitsumi S., Sturmfels B., Takayama N. — Groebner Deformations of Hypergeometric Differential Equations, Algorithms and Computation in Mathematics, Volume 6 | 72 |
| Khuri A.I. — Advanced calculus with applications in statistics | 25 |
| Stone C.J.D. — Course in Probability and Statistics | 580 |
| Rudin W. — Functional analysis | 294 |
| Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 341—342 |
| Lay D.C. — Linear Algebra And Its Applications | 338 |
| Robinson D.J.S. — A Course in Linear Algebra with Applications | 242 |
| Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 168, 313 |
| Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 573 |
| Halmos P.R. — Finite-Dimensional Vector Spaces | 123 |
| Blyth T.S., Robertson E.F. — Further Linear Algebra | 33 |
| Stakgold I. — Green's Functions and Boundary Value Problems | 266 |
| Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 88 |
| Weir A.J. — Lebesgue Integration and Measure | 180 |
| von zur Gathen J., Gerhard J. — Modern computer algebra | 450 |
| Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 157 |
| Tung W.K. — Group Theory in Physics: An Introduction to Symmetry Principles, Group Representations, and Special Functions | 33 |
| Strang G. — Linear Algebra and Its Applications | 138 |
| Sagan B.E. — The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions | 15 |
| Warshauer M.L. — The Witt Group of Degree K Maps and Asymmetric Inner Product Spaces | 29 |
| Mix D.F., Olejniczak K.J. — Elements of Wavelets for Engineers and Scientists | 150 |
| Jeffrey A., Taniuti T. — Mathematics in Science and Engineering: volume 9. Non-linear wave propagation | 89 |
| Searle S.R. — Matrix algebra useful for statistics | 249 |
| Olver P.J., Shakiban C. — Applied linear. algebra | 268, 270, 272 |
| Simmons G.F. — Introduction to topology and modern analysis | 249 |
| Bertlmann R.A. — Anomalies in Quantum Field Theory | 412 |
| Mac Lane S., Birkhoff G.D. — Algebra | 353, 370, 375 |
| Saxe K. — Beginning functional analysis | 115 |
| Curtis M.L. — Abstract Linear Algebra | 122 |
| Bazaraa M.S., Sherali H.D., Shetty C.M. — Nonlinear Programming: Theory and Algorithms | 93 |
| Carl D. Meyer — Matrix Analysis and Applied Linear Algebra Book and Solutions Manual | 322, 403 |
| Hyers D.H., Isac G., Rassias T.M. — Stability of functional equations in several variables | 182 |
| Bridges D.S. — Foundations Of Real And Abstract Analysis | 237 |
| Prilepko A.I., Orlovsky D.G., Vasin I.A. — Methods for Solving Inverse Problems in Mathematical Physics | 303 |
| Streater R.F., Wightman A.S. — PCT, spin and statistics and all that | 88 |
| Naimark M.A., Stern A.I. — Theory of Group Representations | 29, 400 |
| Harville D.A. — Matrix Algebra: Exercises and Solutions | 177 |
| Marks R.J.II. — The Joy of Fourier | 538 |
| Kreyszig E. — Introductory functional analysis with applications | 146 |
| Hefferon J. — Linear algebra | 263 |
| Aliprantis C. — Principles of real analysis | 287, 291 |
| Antsaklis P.S., Michel A.N. — Linear Systems | 441 |
| Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods | 28 |
| McShane E.J., Botts T.A. — Real Analysis | 224 |
| Springer G. — Introduction to Riemann Surfaces | 185 |
| Bruck R.H. — A survey of binary systems | 68 |
| Greub W.H. — Linear Algebra | 66, 188 |
| Douglas R.G. — Banach algebra techniques in operator theory | 71 |
| Loomis L.H. — An introduction to abstract harmonic analysis | 25 |
| Porteous I.R. — Clifford Algebras and the Classical Groups | 32 |
| Mielke A. — Hamiltonian and Lagrangian Flows on Center Manifolds: With Applications to Elliptic Variational Problems | 12 |
| Stakgold I. — Green's functions and boundary value problems | 266 |
| Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 252 |
| Walters P. — An introduction to ergodic theory | 10 |
| Kirillov A.A., Gvishiani A.D., McFaden H.H. — Theorems and Problems in Functional Analysis | 86 |
| Tuynman G.M. — Supermanifolds and Supergroups: Basic Theory | 193 |
| Dorst L., Fontijne D., Mann S. — Geometric algebra for computer science | 82 |
| Percival D.B., Walden A.T. — Wavelet methods for time series analysis | 472, 496 |
| Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 165, 178 |
| Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 27 |
| Herstein I.N. — Topics in algebra | 195 |
| Horn R.A. — Matrix Analysis | 16 |
| Schott J.R. — Matrix Analysis for Statistics | 52 |
| Mcdonald B.R. — Linear algebra over commutative rings | 207 |
| Sexl R., Urbantke H.K. — Relativity, Groups, Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics | 184 |
| Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 14 |
| Marcus M., Minc H. — Introduction to Linear Algebra | 31 |
| Cheney W. — Analysis for Applied Mathematics | 65 |
| Sagle A. A. — Introduction to Lie groups and Lie algebras | 231 |
| Stakgold I. — Boundary value problems of mathematical physics | 121 |
| Golan J.S. — The Linear Algebra a Beginning Graduate Student Ought to Know (Texts in the Mathematical Sciences) | 330 |
| Sima V. — Algorithms for Linear-Quadratic Optimization | 63 |
| Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | 190, 257 |