Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 121 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 222 |
Apostol T.M. — Calculus (vol 2) | 99 |
Dummit D.S., Foote R.M. — Abstract algebra | 341, 843 |
Brauer F., Nohel J.A. — The qualitative theory of ordinary differential equations | 274—283 |
Hedenmalm H., Korenblum B., Zhu K. — Theory of Bergman spaces | 55 |
Bognar J. — Indefinite Inner Product Spaces | 29 |
Olver P.J. — Equivalence, Invariants and Symmetry | 77 |
Cahn R.N. — Semi-Simple Lie Algebras and Their Representations | 6 |
Dixon J.D. — Problems in Group theory | 58 |
Saad Y. — Numerical Methods for Large Eigenvalue Problems | 11, 128 |
Miranker W.L. — Numerical Methods for Stiff Equations and Singular Perturbation Problems | 36, 135 |
Golub G.H., van Loan C.F. — Matrix Computations | 372, 397—403 |
Saad Y. — Iterative Methods for Sparse Linear Systems | 10, 130 |
Hoffman K., Kunze R. — Linear algebra | 199, 206, 314 |
Iohvidov I.S. — Hankel and Toeplitz Matrices and Forms | 22 |
Meyer C.D. — Matrix analysis and applied linear algebra | 259, 262, 263 |
Rudin W. — Real and Complex Analysis | 190, 341 |
de Branges L., Rovnyak J. — Square summable power series | 33 |
Nikolskii N.K. — Treatise on the Shift Operator: Spectral Function Theory | 4 |
De Branges L. — Hilbert Spaces of Entire Functions | vi, 314, 315 |
Hochstadt H. — Integral Equations (Pure & Applied Mathematics Monograph) | 57 |
Fulton W., Harris J. — Representation Theory: A First Course | 6 |
Watkins D. — Fundamentals of matrix computations | 414 |
Rotman J.J. — An Introduction to the Theory of Groups | 135 |
Artin M. — Algebra | 116, 314 |
Douglas R.G. — Banach algebra techniques in operator theory | 98 |
Dummit D.S., Foote R.M. — Abstract Algebra | 319 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 205, 230 |
Shafarevich I.R., Kostrikin A.I. (ed.) — Basic Notions of Algebra | 75, 76, 162, 175 |
Weyl H. — The Classical Groups: Their Invariants and Representations, Vol. 1 | 10, 18 |
Hasumi M. — Hardy Classes on Infinitely Connected Riemann Surfaces | VIII.1A, VIII.2A |
Araki H. — Mathematical Theory of Quantum Fields | 31 |
Hensley D. — Continued Fractions | 208 |
Gohberg I., Goldberg S. — Basic Operator Theory | 88 |
Treil S. — Linear Algebra Done Wrong | 191 |
Banaszczyk W. — Additive Subgroups of Topological Vector Spaces | 14 |
Kolar I., Michor P.W., Slovak J. — Natural Operations in Differential Geometry | 131 |
Blyth T.S., Robertson E.F. — Basic Linear Algebra | 180 |
Köthe G. — Topological vector spaces II | 230 |
Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding | 91 |
Atkinson K.E., Han W. — Theoretical Numerical Analysis: A Functional Analysis Framework | 104 |
Rudin W. — Functional analysis | 310, 382 |
Lang S. — Undergraduate Algebra | 222, 229 |
Eidelman Y., Milman V., Tsolomitis A. — Functional Analysis. An Introduction | 87, 90 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 99, 121 |
Lang S. — Real Analysis | 81, 179, 180 |
Dittrich T. (ed.), Hanggi P. (ed.), Ingold G.-L. (ed,) — Quantum transport and dissipation | 322 |
Rudin W. — Real and complex analysis | 188, 346 |
Staffans O. — Well-Posed Linear Systems | 11, 196—205, 548 |
Gruenberg K.W. — Linear Geometry | 153 |
Lin I.H. — Geometric Linear Algebra. Vol. 1 | 85, 188, 193, 210, 591, 748 |
Simon B. — Representations of Finite and Compact Groups | 24 |
Helemskii A.Ya. — Lectures and Exercises on Functional Analysis, Vol. 233 | 4 |
Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 121 |
Brocker Th., Dieck T.T. — Representations of Compact Lie Groups | 31 |
Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 238 |
Sanders J.A., Verhulst F. — Averaging methods in nonlinear dynamical systems | 144 |
Tung W.K. — Group Theory in Physics: An Introduction to Symmetry Principles, Group Representations, and Special Functions | 33 |
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 2.20, 4.4, 5.0, 5.4, 5.8, 5.9, 5.10, 6.1, 7.1, 7.7, 7.13, 8.2, 11.3, 11.11, 11.15, 11.24, 20.3 |
Hannan E. J. — Multiple time series | 101 |
Stewart G.W. — Matrix algorithms. Volume 2: Eigensystems | see “Eigenspace” |
Demmel J.W. — Applied Numerical Linear Algebra | 145, 147, 153, 154, 156—158, 189, 207 |
Lang S. — SL2: With 33 Figures | 8 |
Al-Khalili J.S., Roeckl E. — The Euroschool Lectures on Physics with Exotic Beams, Vol. 2 | 8 |
Saad Y. — Iterative methods for sparse linear systems | 10, 136 |
Marcus M. — Finite dimensional multilinear algebra. Part I | 63 |
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 216—217, 602 |
Desloge E.A. — Classical Mechanics. Volume 1 | 686, 953, 963 |
Fuhrmann P.A. — A Polynomial Approach to Linear Algebra | 87, 312 |
Olver P.J., Shakiban C. — Applied linear. algebra | 374 |
Kreyszig E. — Advanced engineering mathematics | 865 |
Holmes P., Lumley J.L., Berkooz G. — Turbulence, Coherent Structures, Dynamical Systems and Symmetry | 102—103, 162, 205, 220—221, 319, 322, 337 |
Greiner W., Mueller B. — Quantum mechanics: symmetries | 57 |
Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 223, 230, 231, 233, 244, 245, 248, 265, 474 |
Clausen M. — Fast Fourier transforms | 32 |
Conway J.B. — A Course in Functional Analysis | 39, 182 |
Mac Lane S., Birkhoff G.D. — Algebra | 389 |
Sternberg S. — Group Theory and Physics | 49 |
Saxe K. — Beginning functional analysis | 112 |
Trefethen L.N., Bau D. — Numerical Linear Algebra | 183 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 81, 442, 450 |
Sachs R.K., Wu H. — General relativity for mathematicians | see "Linear transformation" |
Hungerford T.W. — Algebra | 356 |
Stewart G.W., Sun J. — Matrix perturbation theory | 21, 22 |
M.A.Akivis, V.V.Goldberg — Projective Differential Geometry of Submanifolds | 147 |
Bai Z. (ed.) — Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide | 12 |
Moh T.T. — Algebra | 182, 216 |
Carl D. Meyer — Matrix Analysis and Applied Linear Algebra Book and Solutions Manual | 259, 262, 263 |
Wakimoto M. — Infinite-Dimensional Lie Algebras | 10 |
Demmel J. — Applied numerical linear algebra | 145, 147, 153, 154, 156-158, 189, 207 |
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 170 |
Bjoerck A., Dahlquist G. — Numerical mathematics and scientific computation | 193 |
Nicholson W.K. — Linear Algebra with Applications | 388 |
Kreyszig E. — Introductory functional analysis with applications | 374, 491 |
Albert A.A. — Structure of algebras, | 113 |
Hefferon J. — Linear algebra | 379 |
Minoru Wakimoto — Infinite-Dimensional Lie Algebras | 10 |
Antsaklis P.S., Michel A.N. — Linear Systems | 260 |
Abramovich Y.A., Aliprantis C.D. — An Invitation to Operator Theory | 10, 348, 381 |
Birkhoff G., Mac Lane S. — A Survey of Modern Algebra | 344 |
Hausner M., Schwartz J.T. — Lie groups, Lie algebras | 142 |
Dym H., McKean H.P. — Fourier Series and Integrals | 207—208, 210—211, 253 |
Douglas R.G. — Banach algebra techniques in operator theory | 98 |
Loomis L.H. — An introduction to abstract harmonic analysis | 125 |
Rudin W. — Function theory in polydiscs | 70 |
Moh T.T. — Algebra | 182, 216 |
Loomis L.H., Sternberg S. — Advanced calculus | 54, 63 |
Boerner H. — Representations of Groups | 12, 20 |
Jajte R. — Strong Limit Theorems in Non-Commutative Probability | 106 |
Gruenberg K.W., Weir A.J. — Linear Geometry | 153 |
Lang S. — Linear Algebra | 257, 273, 295 |
Streater R.F. — Statistical Dynamics: A Stochastic Approach to Nonequilibrium Thermodynamics | 150 |
Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 99 |
Herstein I.N. — Topics in algebra | 285, 290 |
Albert A.A. — Structure of algebras | 113 |
Zeidler E. — Oxford User's Guide to Mathematics | 648 |
Horn R.A. — Matrix Analysis | 51 |
Gohberg I., Goldberg S., Kaashoek M. — Classes of linear operators. (volume 2) | 8 |
Pazy A. — Semigroups of linear operators ans applications to PDE | 121 |
Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 207—208, 210—211, 253 |
Kalton N., Saab E. — Interaction Between Functional Analysis, Harmonic Analysis, and Probability (Lecture Notes in Pure and Applied Mathematics) | 1, 7 |
Sexl R., Urbantke H.K. — Relativity, Groups, Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics | 155 |
Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 10 |
Marcus M., Minc H. — Introduction to Linear Algebra | 64, 99, 143 |
Campbell S.L., Meyer C.D. — Generalized Inverses of Linear Transformations (Classics in Applied Mathematics) | 4, 7 |
Young D.M., Gregory R.T. — A Survey of Numerical Mathematics, Volume 2 | 748—751 |
Sagle A. A. — Introduction to Lie groups and Lie algebras | 164, 191, 209 |
Golan J.S. — The Linear Algebra a Beginning Graduate Student Ought to Know (Texts in the Mathematical Sciences) | 103 |
Abramovich Y., Aliprantis C. — An Invitation to Operator Theory (Graduate Studies in Mathematics, V. 50) | 10, 348, 381 |
Bhatia R. — Matrix Analysis | 10 |
Lang S. — SL2 (R) (Graduate Texts in Mathematics) | 8 |
Lindstrum A.O. — Abstract algebra | 187 |
Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | 109, 110, 146, 202, 209, 221 |