Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Anderson P.W. — Basic notions of condensed matter physics | |
de Berg M., van Kreveld M., Overmars M. — Computational Geometry : Algorithms and applications | 269, 314 |
Kassel C. — Quantum Groups | 267, 269, 479 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 126.L 402.G |
Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | 22, 48 |
Berger M. — A Panoramic View of Riemannian Geometry | 507 |
Meirovitch L. — Methods of analytical dynamics | 46, 172 |
Frenkel E., Ben-Zvi D. — Vertex algebras and algebraic curves | 207 |
Manin Yu.I. — Frobenius manifolds, quantum cohomology, and moduli spaces | IV.4.3 |
Mishra B. — Algorithmic algebra | 10 |
Majid S. — Foundations of Quantum Group Theory | 181, 182 |
Goldstein H., Poole C., Safko J. — Classical mechanics | 34, 357 |
Naber G.L. — The geometry of Minkowski spacetime: an introduction to the mathematics of the special theory of relativity | 235 |
Opechowski W. — Crystallographic and metacrystallographic groups | 522 |
Hand L.N., Finch J.D. — Analytical Mechanics | 36—37, 229 |
Hazewinkel M. (ed.) — Handbook of Algebra, Volume 4 | 429, 430, 434, 443, 444, 452 |
Atiyah M. — Representation Theory of Lie Groups | 166 |
McCarthy J.M., Wiggins S. (Ed), Sirovich L. — Geometric Design of Linkages | 3 |
Zung N.T. — Poisson Structures and their Normal Forms | 4 |
Ruelle D. — Thermodynamic Formalism: The Mathematical Structure of Equilibrium Statistical Mechanics | 3, 7, 11 |
Krupkova O. — The Geometry of Ordinary Variational Equations | 31, 63, 151 |
Mayer J.E., Mayer M.G. — Statistical Mechanics | 133, 215—217, 231, 277 |
Bridges Th.J., Furter J.E. — Singularity Theory and Equivariant Symplectic Maps | 11. |
Greiner W. — Quantum mechanics. An introduction | 60, 257, 368 |
Mensky M.B. — Continuous quantum measurements and path integrals | 35 |
Streater R.F. (Ed) — Mathematics of Contemporary Physics | 79, 87, 97 |
Altmann S.L. — Band Theory of Solids: An Introduction from the Point of View of Symmetry | 26 |
Planck M. — Introduction to Theoretical Physics | 83—84, 117 |
Kohno T. — Conformal Field Theory and Topology | 52, 75 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 469 |
Domb C., Lebowitz J.L. — Phase Transitions and Critical Phenomena (Vol. 19) | 394 |
Ito K. — Encyclopedic Dictionary of Mathematics | 126.L, 402.G |
Collins G.W. — Fundamentals of Stellar Astrophysics | 18 |
DeWitt B.S. — The global approach to quantum field theory (Vol. 1) | 3 |
Lanzcos C. — The Variational Principles of Mechanics | 12, 138 |
Featherstone R. — Rigid Body Dynamics Algorithms | 40 |
Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 43 |
Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 40 |
Sack J.R., Urrutia J. (Ed) — Handbook of Computational Geometry | 31, 51, 578, 655, 706 |
Strichartz R.S. — The way of analysis | 505 |
Shanbhag D.N. (ed.), Rao C.R. (ed.) — Stochastic Processes - Modelling and Simulation | 477 |
Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 1 |
Zimmer E. — Revolution in Physics | 161, 182 |
Mercier A. — Analytical and canonical formalism in physics | 2, 4, 5, 10, 15, 18, 20, 25, 27, 33, 50, 97, 105, 132 |
Visser M. — Lorentzian wormholes. From Einstein to Hawking | 35, 68, 70, 71, 347 |
Mattheij R.M.M., Molenaar J. — Ordinary Differential Equations in Theory and Practice (Classics in Applied Mathematics) (No. 43) | 283 |
Logan J.D. — Invariant Variational Principles | 10 |
Fomenko À.Ò., Mishehenko A.S. — A Short Course in Differential Geometry and Topology | 80 |
Elze H.-T. (ed.) — Decoherence and entropy in complex systems | 19, 36, 37, 54 |
O`Hara J. — Energy of knots and conformal geometry | 147 |
Wen-Tsun W. — Mathematics Mechanization | c6d5. 3 |
Park D. — Introduction to the quantum theory | 72 |
Paoluzzi A. — Geometric Programming for Computer Aided Design by Alberto Paoluzzi: Book Cover * o Table of Contents Read a Sample Chapter Geometric Programming for Computer Aided Design | 653 |
Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems | 7 |
Ardema M.D. — Analytical Dynamics: Theory and Applications | 49 |
D'Inverno R. — Introducing Einstein's Relatvity | 115 |
Mazo R.M. — Brownian Motion: Flucuations, Dynamics, and Applications | 183, 208, 226 |
Libermann P., Marle Ch.M. — Symplectic Geometry and Analytical Mechanics | 247, 490, 492 |
Shankar R. — Principles of quantum mechanics | 76 |
Eddington A.S. — Nature of the Physical World | 219 |
Cotterill R.M.J. — Biophysics: An Introduction | 48 |
Prigogine I. — Proceedings of the International Symposium on Transport. Processes in Statistical Mechanics, held in Brussels,. August 27-31, 1956 | 249 |
Stahl A., Balslev I. — Electrodynamics of the Semiconductor Band Edge | 5, 22, 106 |
Ohtsuki T. — Quantum invariants: a study of knot, 3-manifolds, and their sets | 103, 201 |
Margenau H., Murphy G.M. — The mathematics of physics and chemistry | 336 |
Woodhouse N.M.J. — Geometric quantization | 16 |
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 425, 426, 429 |
Reichenbach H. — Philosophic Foundations of Quantum Mechanics | 65 |
Messiah A. — Quantum mechanics. Volume 1 | 31, 68, 164 |
Lanczos C. — Variational principles of mechanics | 12, 138 |
Frenkel J. — Wave Mechanics: Advanced General Theory | 167 |
Wigner E.P. — Group Theory and Its Applicaion to the Quantum Mechanics of Atomic Spectra | 32, 105 |
Hermann R. — Differential geometry and the calculus of variations | 176, 185, 219, 429 |
Callen H. — Thermodynamics and an Introduction to Thermostatistics | 95 |
Kneale W. — Probability and Induction | 181f. |
Mayer J.E., Goeppert Mayer M. — Statistical mechanics | 133, 215—217, 231, 277 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 169, 265 |
Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 189 |
Kemble E. C. — The fundamental principles of quantum mechanics | 21, 115 |
Bornemann F. — Homogenization in Time of Singularly Perturbed Mechanical Systems (Lecture Notes in Mathematics, 1687) | 17 |
Leeuwen J.V. — Handbook of Theoretical Computer Science: Algorithms and Complexity | 396 |
Avramidi I.G. — Heat Kernel and Quantum Gravity | 77, 78, 80, 84, 111, 114 |
Khinchin A.Y. — Mathematical Foundations Of Quantum Statistics | 46 |
Ercolani N.M., Gabitov I.R., Levermore C.D. — Singular limits of dispersive waves | 205 |
Leeuwen J. (ed.), Meyer A.R., Nivat M. — Algorithms and Complexity, Volume A | 396 |
Loomis L.H., Sternberg S. — Advanced calculus | 509 |
Lane S.M. — Mathematics, form and function | 270 |
Hirsch M.W., Smale S. — Differential Equations, Dynamical Systems, and Linear Algebra | 287 |
Hinrichsen D., Pritchard A. — Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness | 29, 30 |
Reithmeier E. — Periodic Solutions of Nonlinear Dynamical Systems: Numerical Computation, Stability, Bifurcation and Transition to Chaos | 5, 36, 64, 114 |
Frankel T. — The geometry of physics: an introduction | 9, 50 |
Bjorner A. — Oriented Matroids | 481 |
Bjorner A., Vergnas M., Sturmfels B. — Oriented Matroids, Second edition (Encyclopedia of Mathematics and its Applications) | 481 |
Cox D., Little J., O'Shea D. — Ideals, varieties, and algorithms | see "Space, configuration (of a robot)" |
Planck M. — The universe in the light of modern physics | 27sqq., 33sq., 36, 44 |
Greiner W. — Classical mechanics. Systems of particles and hamiltonian dynamics | 364 |
Zeidler E. — Oxford User's Guide to Mathematics | 543, 922 |
Arnold V.I. — Ordinary Differential Equations | 79 |
Langhaar H.R. — Energy Methods in Applied Mechanics | 3 |
Haile J.M. — Molecular Dyanmics Simualtion: Elementary Methods | 11, 43 |
Haile J.M. — Molecular Dyanmics Simualtion: Elementary Methods | 11, 43 |
Slater J., Frank N. — Introduction to Theoretical Physics | 83—84, 117 |
Frankel T. — The geometry of physics: An introduction | 9, 50 |
Landau L.D., Lifshitz E.M. — Course of Theoretical Physics (vol.3). Quantum Mechanics. Non-relativistic Theory | 6 |
Schutz B. — Geometrical Methods in Mathematical Physics | 174 |
Park D. — Introduction to the Quantum Theory (Pure & Applied Physics) | 72 |
Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems | 7 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 169, 265 |
Mac Lane S. — Mathematics: Form and Function | 270 |
Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 43 |
Mezey P.G. — Shape In Chemistry: An Introduction To Molecular Shape And Topology | 8 |
Logan J. — Applied Mathematics: A Contemporary Approach | 127 |
Kalckar J. — Foundations of Quantum Physics I (1926 - 1932), Volume 6 | 32, 34, 98, 102—103, 128, 154, 174, 181, 394, 434 |
Jost J. — Bosonic Strings: A mathematical treatment | 7 |