|
|
 |
| Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Feynman diagrams
| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | | Anderson P.W. — Basic notions of condensed matter physics | | | Greiner W., Muller B., Rafelski J. — Quantum electrodynamics of strong fields | see “Diagrams” | | Mahan G.D. — Many-particle physics | see “Diagrams” | | Zinn-Justin J. — Quantum field theory and critical phenomena | 97, 122, 451 | | Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 20 | | Zinn-Justin J. — Quantum field theory and critical phenomena | 90, 117, 450 | | Husemoeller D. — Elliptic curves | 404 | | Conte R. — Painleve Property: One Century Later | 236, 271 | | Nayfeh A.H. — Perturbation Methods | 308, 361—372 | | Hess B.A. — Relativistic Effects in Heavy-Element Chemistry and Physics | 29, 42, 43, 48 | | Mukamel S. — Principles of Nonlinear Optical Spectroscopy | 137, 144, 156 | | Cartier P., Julia B., Moussa P. — Frontiers in Number Theory, Physics, and Geometry II | 138, 147, 156, 157, 627 | | Gleick J. — Chaos. Making a new science | 162 | | Rockmore D. — Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers | 163 | | Borwein J., Bailey D. — Mathematics by Experiment: Plausible Reasoning in the 21st Century | 58 | | Ramond P. — Field Theory: A Modern Primer | 86 | | Dorlas T.C. — Statistical mechanics, fundamentals and model solutions | 213 | | Lerner K.L., Lerner B.W. — The gale encyclopedia of science (Vol. 6) | 3:1597—1599, 3:2595 | | Mukamel S. — Principles of nonlinear spectroscopy | 137, 144, 156 | | Ramond P. — Field Theory: A modern Primer | 59 | | Hofstadter D.R. — Godel, Escher, Bach: An Eternal Golden Braid | 144—146 | | Green M.B., Schwarz J.H., Witten E. — Superstring Theory (vol. 1) | 27—29 | | Bailin D., Love A. — Introduction to Gauge Field Theory | 62—63 | | Rickayzen G. — Green's functions and condensed matter | 19, 56—58, 61, 66—71, 325—331 | | Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 81 | | Stone M. — The physics of quantum fields | 97 | | Visser M. — Lorentzian wormholes. From Einstein to Hawking | 260 | | Rockmore D. — Stalking the Riemann Hypothesis | 163 | | Lee T.D. — Practicle physics and introduction to field theory | 62ff | | Rivers R.J. — Path Integral Methods in Quantum Field Theory | 15 | | Weinberg S. — The Quantum Theory of Fields. Vol. 1 Foundations | 36—7, 259—91 | | Bethe H.A., Salpeter E.E. — Quantum Mechanics of One-and-Two-Electron Atoms | 90, 91 | | Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 103, 274, 454—455, 459—460, 466 | | Martin B.R., Shaw G. — Particle Physics | 8—14 | | Perkins D.H. — Particle Astrophysics | 9, 19 | | Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems | 96, 378, 399—401, 559—562 | | Avery J. — Creation and Annihilation Operators | 115—117, 133—137 | | Stahl A. — Physics with tau leptons | 115—117, 133—137 | | Schulman L.S. — Techniques and applications of path integration | 65—69, 324 | | Hoddeson L., Daitch V. — True Genius: The Life and Science of John Bardeen | 196—197 | | Greiner W. — Quantum mechanics: special chapters | 56 | | Tsvelik A.M. — Quantum field theory in condensed matter physics | 41, 94 | | Volovik G. — Artificial black holes | 231, 232, 239 | | Conte R. — The Painlevé property: One century later | 236, 271 | | Fox M. — Optical properties of solids | 21, 220, 237, 243-4 | | Shu F.H. — The Physical Universe: An Introduction to Astronomy | 108 | | Povh B., Rith K., Scholz C., Zetsche F. — Particles and nuclei. An introduction to the Physical Concepts | 50 | | Papadopoulos G.J. (ed.), Devreese J.T. (ed.) — Path integrals and their applications in quantum, statistical, and solid state physics | 1—500 | | Akhiezer A.I., Berestetskii V.B. — Quantum electrodynamics | 307 | | Tsvelik A.M. — Quantum field theory in condensed matter physics | 41, 94 | | Nishijima K. — Fundamental particles | 127 | | Henley E.M., Thirring W. — Elementary Quantum Field Theory | 203, 208, 215, 250, 251, 253 | | Szabo R.J. — An Introduction to String Theory and D-Brane Dynamics | 1, 36, 39 | | Greiner W., Reinhardt J. — Field quantization | 236, 239, 382 | | Hooft G.T. — Under the spell of the gauge principle | 14 | | Caianiello E.R. — Combinatorics and renormalization in quantum field theory | 46, 48 | | Milonni P.W. — The quantum vacuum: introduction to quantum electrodynamics | 452—471 | | Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 400 | | Tsang L., Kong J.A. — Scattering of electromagnetic waves (Vol 3. Advanced topics) | 2, 164, 172 | | Boyd R.W. — Nonlinear Optics | 169, 176 | | Abrikosov A.A., Gorkov L.P., Dzyalosliinski I.E. — Methods of quantum fields theory in statistical physics | 66ff. | | Haag R. — Local quantum physics: fields, particles, algebras | 67 | | Yariv A. — Quantum Electronics | 58 | | Polchinski J. — String theory (volume 2). Superstring theory and beyond | 102, 176, 316 | | Prikarpatsky A.K., Taneri U., Bogolubov N.N. — Quantum field theory with application to quantum nonlinear optics | 35 | | Kashiwa T., Ohnuki Y., Suzuki M. — Path Integral Methods | 42 | | Abrikosov A.A., Gîr'kov L.P., Dzyalosiiinskh I.Yk. — Quantum field theoretical methods in statistical physics | 66ff. | | Close F. — The New Cosmic Onion: Quarks and the Nature of the Universe | 50, 110 | | Davies P. — The New Physics | 86, 88, 300, 427 | | Kleinert H. — Gauge fields in condensed matter (part 2) | 36, 99, 133, 154 | | Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems | 96, 378, 399—401, 559—562 | | D.H. Perkins — Introduction to high energy physics | 38 |
|
|