Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 257 |
Nagel R. — One-parameter semigroups of positive operators | 369, 400 |
Ñåðãèåíêî À.Á. — Öèôðîâàÿ îáðàáîòêà ñèãíàëîâ | 96 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 126.B |
Ogata K. — Modern Control Engineering | 71 |
Evans L.C. — Partial Differential Equations | 568 |
Gustafsson F. — Adaptive filtering and change detection | 14 |
Agrachev A.A., Sachkov Yu.L. — Control theory from the geometric viewpoint | 11 |
Landsman N.P. — Mathematical topics between classical and quantum mechanics | 2, 49 |
Engel K.-J., Nagel R. — One-Parameter Semigroups for Linear Evolution Equations | 368, 452, 533 |
Skorokhod A.V., Prokhorov Y.V. (Ed) — Basic Principles and Applications of Probability Theory | 147 |
Hagen R., Roch S., Silbermann B. — C-Algebras and Numerical Analysis | 134 |
Thorisson H. — Coupling, Stationarity, and Regeneration | 33 |
Gupta M.M., Jin L., Homma N. — Static and dynamic neural networks | 512 |
Murnaghan F.D. — The calculus of variations | 7, 71 |
Kohonen T. — Self-organizing maps | 270 |
Breuer L., Baum D. — Introduction to Queueing Theory and Matrix-Analytic Methods | 9, 37 |
Cappe O., Ryden T., Moulines E. — Inference in Hidden Markov Models | 38 |
McConnell J.C., Robson J.C. — Noncommutative Noetherian Rings | 12.8.1 |
Fleming W.H., Soner H.M. — Controlled Markov Processes and Viscosity Solutions | 120, 130 |
Haran S.M.J. — Arithmetical Investigations: Representation Theory, Orthogonal Polynomials, and Quantum Interpolations | 35, 42 |
Smith L.A. — Chaos: A Very Short Introduction | 36, 168 |
Schenk C.A., Schueller G.I. — Uncertainty Assessment of Large Finite Element Systems | 113, 147 |
Pliska S.R. — Introduction to Mathematical Finance | 106 |
Smith P. — Explaining chaos | 3 |
Forsyth R., Naylor Ch. — The Hitch-Hicker's Guide to Artificial Intelligence | 143 |
Malliaris A.G., Brock W.A. — Stochastic methods in economics and finance | 33 |
Gleick J. — Chaos. Making a new science | see “Phase space” |
Marcus M., Rosen J. — Markov Processes, Gaussian Processes and Local Times | 63 |
Shiryaev A., Peskir G. — Optimal Stopping and Free-Boundary Problems | 76 |
Alfsen E.M. — Compact Convex Sets and Boundary Integrals | 72 |
Alberti P.M., Uhlmann A. — Stochasticity and Partial Order | 59 |
Rammer J. — Quantum transport theory | 15, 33 |
Dorlas T.C. — Statistical mechanics, fundamentals and model solutions | 1 |
Li M., Vitanyi P. — An introduction to Kolmogorov complexity and its applications | 559 |
Ito K. — Encyclopedic Dictionary of Mathematics | 126.B |
Shiryaev A.N. — Probability | 112 |
Kannan D. (ed.), Lakshmikantham V. (ed.) — Handbook of stochastic analysis and applications | 1 |
Kuhn D. — Generalized Bounds For Convex Multistage Stochastic Programs | 8 |
Kuo W., Zuo M.J. — Optimal Reliability Modeling: Principles and Applications | 40 |
Nagel R., Derdinger R., Günther P. — Ergodic theory in the perspective of functional analysis | I/3, II/5, II/19 |
Staffans O. — Well-Posed Linear Systems | 1, 38 |
Featherstone R. — Rigid Body Dynamics Algorithms | 42 |
Duffie D. — Security Markets. Stochastic Models | 173, 184, 266 |
Denker M., Grillenberger Ch., Sigmund K. — Ergodic Theory on Compact Spaces | 36 |
Hilborn R.C. — Chaos and nonlinear dynamics | 31, 71 |
Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 257 |
Sakai S. — C*-algebras and W*-algebras | 41 |
Peleg Y., Pnini R., Zaarur E. — Schaum's outline of theory and problems of quantum mechanics | 50 |
Bellman R.E. — Introduction to the mathematical theory of control processes (Volume I: Linear Equations and Quadratic Criteria) | 136 |
Churchland P.S., Sejnowski T.J. — The computational brain | 64—65, 155, 163 |
Mattheij R.M.M., Molenaar J. — Ordinary Differential Equations in Theory and Practice (Classics in Applied Mathematics) (No. 43) | 4 |
Wallace C.S. — Statistical and Inductive Inference by Minimum Message Length | 340 |
Blumenthal R.M. — Excursions of markov processes | 1 |
Borne T., Lochak G., Stumpf H. — Nonperturbative quantum field theory and the structure of matter | 69, 97ff |
Cohen-Tannoudji C., Dupont-Roc J., Grynberg G. — Photons and atoms: introduction to quantum electrodynamic | 175 (see also “Subsidiary condition in the Coulomb gauge”) |
Billingsley P. — Probability and Measure | 108 |
Âraker J.G. — Algorithms and applications in timed discrete event systems | 18, 25, 55 |
Dijkstra H.A. — Nonlinear physical oceanography | 68 |
Lipschutz S. — Schaum's Outline of Probability | 130 |
Ardema M.D. — Analytical Dynamics: Theory and Applications | 50 |
Fuhrmann P.A. — A Polynomial Approach to Linear Algebra | 273 |
Harmand P., Werner D., Werner W. — M-Ideals in Banach Spaces and Banach Algebras | 218 |
Bellman R. — Algorithms, graphs, and computers, Volume 62 (Mathematics in Science and Engineering) | 113 |
Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 196 |
Conway J.B. — A Course in Functional Analysis | 258 |
Peterson J.L. — Petri net theory and the modeling of systems | 23—25, 211 |
Grasman J. — Asymptotic methods for relaxation oscillations and applications | 190 |
Kao E. — Introduction to Stochastic Processes | 2 |
Kraetzschmar G.K. — Distributed Reason Maintenance for Multiagent Systems | 247 |
Staicu V. (ed.) — Differential Equations, Chaos and Variational Problems | 30—33, 40—41 |
Rao M.M., Swift R.J. — Probability Theory With Applications | 146 |
Socha L. — Linearization Methods for Stochastic Dynamic Systems | 2 |
Adomian G. — Stochastic Systems | 62 |
Callen H. — Thermodynamics and an Introduction to Thermostatistics | 344 |
Leuchs G., Beth T. (eds.) — Quantum Information Processing | 135, 136 |
Antsaklis P.S., Michel A.N. — Linear Systems | 56, 58 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 265 |
Franklin G.F., Workman M.L., Powell J.D. — Digital Control of Dynamic Systems | 6, 101 |
Dawson D. — Introduction to Markov Chains | 1 |
Walters P. — An introduction to ergodic theory | 21, 105 |
Giarratano J.C., Riley G.D. — Expert Systems: Principles and Programming | 101 |
Hirsch M.W., Smale S. — Differential Equations, Dynamical Systems, and Linear Algebra | 23, 289 |
Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology, | 263 |
Reithmeier E. — Periodic Solutions of Nonlinear Dynamical Systems: Numerical Computation, Stability, Bifurcation and Transition to Chaos | 4, 9 |
Silhavy M. — The Mechanics and Thermodynamics of Continuous Media | 89 |
Cvitanovic P., Artuso R., Dahlqvist P. — Classical and quantum chaos | 34, see also "Phase space" |
Lasota A., Mackey M.C. — Probabilistic Properties of Deterministic Systems | 1 |
Blomberg H.( ed.) — Algebraic theory for multivariable linear systems, Volume 166 | 159 |
Rao J.R. — Extensions of the UNITY Methodology: Compositionality, Fairness and Probability in Parallelism | 11 |
Hu S., Papageorgiou N.S. — Handbook of Multivalued Analysis, Volume II: Applications | 711, 719, 729, 743, 754 |
Gohberg I., Goldberg S., Kaashoek M. — Classes of linear operators. (volume 2) | 704, 776 |
Peszat S., Zabczyk J. — Stochastic partial differential equations with Levy noise: An evolution equation approach | 3 |
Bharucha-Reid A.T. — Elements of the Theory of Markov Processes and Their Applications | 10 |
Blumenthal R.K., Getoor R.M. — Markov processes and potential theory | 20 |
Revuz D., Yor M. — Continuous martingales and Brownian motion | 15 |
Bertsekas D.P., Shreve S.E. — Stochastic Optimal Control: The Discrete-Time Case | 2, 26, 188, 216, 243, 245, 248, 251, 271 |
Sinclair A., Smith R. — Hochschild Cohomology of Von Neumann Algebras (London Mathematical Society Lecture Note Series) | 23 |
Groesen E., Molenaar J. — Continuum Modeling in the Physical Sciences (Monographs on Mathematical Modeling and Computation) | 71 |
Flanders H. — Differential Forms with Applications to the Physical Sciences | 165 |
Ñåðãèåíêî À.Á. — Öèôðîâàÿ îáðàáîòêà ñèãíàëîâ. Ó÷åáíèê äëÿ âóçîâ. | 96 |
Fuchssteiner B., Lusky W. — Convex Cones (North-Holland Mathematics Studies) | 90 |
Stamatescu I., Seiler E. — Approaches to Fundamental Physics | 62, 64, 68, 69, 80, 81 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 265 |
Bruss D. (ed.), Leuchs G. (ed.) — Lectures on Quantum Information | 40 |