|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: confinement
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Kogut J.B., Stephanov M.A. — The Phases of Quantum Chromodynamics: From Confinement to Extreme Environments | | Ìóõèí Ê.Í. — Ýêñïåðèìåíòàëüíàÿ ÿäåðíàÿ ôèçèêà (Êíèãà 2) | 330 | Zinn-Justin J. — Quantum field theory and critical phenomena | 466, 701, 703, 731, 735 | Zinn-Justin J. — Quantum field theory and critical phenomena | 462, 730, 735, 748 | Felsager B. — Geometry, particles and fields | 450—451 | Wesson J. — Tokamaks | 150 | Serre D. — Handbook of Mathematical Fluid Dynamics, Vol. 1 | 88, 195—196 | Fradkin E. — Field theories of condensed matter systems | 150, 197 | Smith P. — Explaining chaos | 15, 20, 102, 168 | Aitchison I.J.R., Hey A.J.G. — Gauge theories in particle physics. Volume 1: from relativistic quantum mechanics to QED | 17, 43—44, 270 | Kapusta J.I. — Finite-temperature field theory | 120, 123, 135, 138, 161 | Itoh K., Fukayama A. — Transport and Structural Formation in Plasmas | 7, 280 | Getzlaff M. — Fundamentals of Magnetism | 227 | Ramond P. — Field Theory: A Modern Primer | 380 | Frank J., King A., Raine D.J. — Accretion Power in Astrophysics | 271 | Georgi H. — Lie algebras in particle physics | 146 | Dittrich T. (ed.), Hanggi P. (ed.), Ingold G.-L. (ed,) — Quantum transport and dissipation | 84 | Hughes I.S. — Elementary Particles | 305—306 | Close F.E. — An introduction to quarks and partons | 8, 337, 410—428 | Ramond P. — Field Theory: A modern Primer | 292 | Gottfried K., Weisskopf V.F. — Concepts of particle physics (volume 2) | 397—401 | van Baal P. (ed.) — Confinement, duality, and non-perturbative aspects of QCD | 1, 21, 64, 123, 222, 266, 309, 379, 387, 415, 439, 477, 484, 546 | Nagaosa N. — Quantum field theory in condensed matter physics | 78 | Collins P.D., Squires E.J., Martin A.D. — Particle Physics and Cosmology | 10, 14, 17, 58, 200 | Anderson P.W. — The theory of superconductivity in the high-Tc curprates | 5, 6, 40ff, 71—74, 151, 163, 205—208, 327—352, 365—374, see also “Coherence mechanisms” | Griffits D. — Introduction to elementary particles | 40, 42, 64—65, 286, 289, 295—296 | Dresselhaus M.S., Dresselhaus G., Avouris Ph. — Carbon nanotubes | 190 | Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians (Vol. 1) | 12, 1195, 1220ff, 1258ff, 1271, 1345, 1433, 1448 | Arias J.M., Lozano M. — The Hispalensis Lectures On Nuclear Physics, Vol. 2 | 3 | Martin B.R., Shaw G. — Particle Physics | 141—142, 146—147, 151 | Gambini R., Pullin J. — Loops, Knots, Gauge Theories and Quantum Gravity | 124 | Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 10, 14, 17, 58, 200 | Kolb E.W., Turner M.S. — The Early Universe | 508 | Zory P.S. — Quantum well lasers | see “Carrier confinement; Optical confinement” | Halzen F., Martin A.D. — Quarks and Leptons: An Introductory Course in Modern Particle Physics | 6, 19 | Tsvelik A.M. — Quantum field theory in condensed matter physics | 319 | Siegel W. — Fields | IVB1, XIC | Alloin D., Johnson R., Lira P. — Physics of Active Galactic Nuclei at all Scales | 19, 25, 26, 64 | Anisovich V.V., Kobrinsky M.N., Nyiri J. — Quark Model and High Energy Collisions | vii, viii, 2, 4, 5, 15, 56, 57, 113, 115, 151, 222, 385 | Cheng T.-P., Li L.-F. — Gauge Theory of Elementary Particle Physics | 124, 279, 322-3 | Thomas A.W., Weise W. — The structure of the nucleon | 148, 212, 222, 226, 233, 240 | Blaschke D., Ivanov M.A., Mannel T. — Heavy Quark Physics | 149, 170, 177, 184 | Porter M.C. — Handbook of Industrial Membrane Technology | 402 | Aitchison I.J.R. — An Informal Introduction to Gauge Field Theories | 163 | Povh B., Rith K., Scholz C., Zetsche F. — Particles and nuclei. An introduction to the Physical Concepts | 105, 107, 176, 237, 238 | Itzykson C., Drouffe J-M. — Statistical field theory. Vol. 1 | 345 | Tsvelik A.M. — Quantum field theory in condensed matter physics | 319 | Anderson J.B. — Quantum Monte Carlo: Origins, Development, Applications | 63, 136, 142 | Siegel W. — Fields | IVB1, XIC | Konopleva N.P., Popov V.N. — Gauge Fields | 36 | Greiner W., Neise L., Stöcker H. — Thermodynamics and statistical mechanics | 387 | Brewer D.F. — Progress in Low Temperature Physics. Volume X | 192 | Mohapatra R.N. — Massive Neutrinos in Physics and Astrophysics | 14 | Leader E., Predazzi E. — An introduction to gauge theories and modern particle physics | 2.98, 2.309 | Rajaraman R. — Solitons and instantons | 3 | Deligne P., Etingof P., Freed D. — Quantum fields and strings: A course for mathematicians, Vol. 2 (pages 727-1501) | 12, 1195, 1220ff, 1258ff, 1271, 1345, 1433, 1446 | Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians | 12, 1195, 1220ff, 1258ff, 1271, 1345, 1433, 1446 | Greiner W., Neise L., Stocker H. — Thermodynamics and statistical mechanics | 387 | Vafa C., Zaslow E. — Mirror symmetry | 381 | Kardar M. — Statistical physics of fields | 133 | Zory P.S. (ed.), Kelley P. (ed.), Liao P.F. (ed.) — Quantum Well Lasers | see "Carrier confinement", "Optical confinement" | Morii T., Lim C., Mukherjee S. — The physics of the standard model and beyond | 4, 103 | Sturrock P. — Plasma Physics: An Introduction to the Theory of Astrophysical, Geophysical and Laboratory Plasmas | 3, 43 | Ehrenreich H., Spaepen F. — Solid State Physics. Volume 49 | see "Electronic confinement", "Optical confinement" | Meyer-Ortmanns H., Reisz T. — Principles of phase structures in particle physics | 231, 244, 450 | Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 10, 14, 17, 58, 200 | Blin-Stoyle R.J. — Eureka! Physics of particles, matter and the universe | 155 | Stamatescu I., Seiler E. — Approaches to Fundamental Physics | 32, 33, 41, 48, 69, 73, 403, 408 | Bellac M. — Thermal Field Theory (Cambridge Monographs on Mathematical Physics) | 4 | Alloin D., Johnson R., Lira P. — Physics of Active Galactic Nuclei at all Scales (Lecture Notes in Physics) | 19, 25, 26, 64 |
|
|