Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Anderson J.B. — Quantum Monte Carlo: Origins, Development, Applications
Anderson J.B. — Quantum Monte Carlo: Origins, Development, Applications



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Quantum Monte Carlo: Origins, Development, Applications

Автор: Anderson J.B.

Аннотация:

Monte Carlo methods are a class of computational algorithms for simulating the behavior of a wide range of various physical and mathematical systems (with many variables). Their utility has increased with general availability of fast computers, and new applications are continually forthcoming. The basic concepts of Monte Carlo are both simple and straightforward and rooted in statistics and probability theory, their defining characteristic being that the methodology relies on random or pseudo-random sequences of numbers. It is a technique of numerical analysis based on the approximate solution of a problem using repeated sampling experiments and observing the proportion of times a given property is satisfied.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2007

Количество страниц: 165

Добавлена в каталог: 12.01.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Activation energies      14
Adiabatic diffusion Monte Carlo      115
Alder, B.J.      18 25 30 36 39 64 102
Alexander, S.A.      74 119 151
An, G.      76
Anderson, J.B.      3 10—12 14 15 17—19 24 29 31 34 39 44 47 53 55 59 63 66 71 75 82 84 89 90 96 98 116 122 123 137 153 155
Andzelm, J.      60
Anharmonic oscillators      60 65 72 157
Arnow, D.M.      22 75
Aspuru-Guzik, A.      143
Astrakharchik, G.E.      136
Auxiliary field methods      42 133
Axilrod — Teller — Muto (ATM) expression      48 66
Axilrod, B.M.      66
Aziz, R.A.      104
Bachelet, G.B.      79
Backfiow      67
Baer, R.      42 133
Bahnsen, R.      142
Bak, K.L.      130
Balakrishnan, A.      96
Ballone, P.      85 102
Band gap      94
Baranger, H.U.      154
Barnett, R.N.      31 41 77 80 81 105
Baroni, S.      117 144 149
Barrier heights      14 29 31 53 75 84 127 137 153
Basch, H.      94 113
Bauer, S.H.      14
Belohorec, P.      87
Benchmarks      21 134 135
Berendsen, H.J.C.      124
Berne, B.J.      20 50
Bernu, B.      93
Bettens, R.P.A.      147
Bhattacharya, A.      90
Biexitons      28
Bijl functions      11
Bijl, A.      11
Bishop, R.F.      86
Blinov, N.      149
Bloch equation      45
Blume, D.      136
Boghosian, B.M.      3 71 75 82 89 90 98
Bolton, F.      95
Bonifacic, V.      51 111
Born — Oppenheimer approximation      13 24 36 71 82 96 152
Bose fluid      136
Bowman, J.M.      120 157
Boyd, R.J.      146
Boys, S.F.      23 33 37 67
Braams, B.J.      157
Bressanini, D.      109
Broude, S.      120
Brown, D.F.R.      101
Brown, M.G.      103 118
Brus, L.E.      63
Buch, V.      83 118 124
Buda, F.      145
Buendia, E.      86
Caffarel, M.      52 60 78 98
Cancellation methods      15 17 22 33 40 65 75 82—84 89 90 96 123 130
Car, R.      152
Carlson, J.      58 61 139
Carter, C.      103
Cazzato, P.      144
Cencek, W.      24
Ceperley, D.M.      18 25 30 36 39 48 73 79 93 102
Channels      72
Chebib, M.      147
Chekmarev, D.      110
Chen, B.      96 100
Chester, G.V.      9 27 36 48 77 117
Chiocchetti, M.G.B.      79
Chou, M.Y.      107
Christiansen, P.A.      43
Chromophores      145
Clary, D.C.      101 103 129
Claverie, P.      52 60
Clementi, E.      84
Clusters      21 27 35 50 68 70 83 85 92 100 101 103 104 114 116—118 120 124 131 132 144 148 149 157
Coalescence point      36
Cohesive energy      54 64 79 125
Coker, D.F.      35 40 45 48 65
Coldwell, R.L.      13 74 119 122 151
Configuration interaction (CI) method      20 25 37 44 66 67 87 89 105 112 116 126 132
confinement      63 136 142
Conroy, H.      4 13 74
Core electrons      43 46 56 61 69 79 108 111
Core-valence correlation      46 51 108
Correction methods      15 17 78 123 151
Correlated sampling      13 38 58 59 123 133 152
Correlation energies      24 37 39 44 53 55 67 73 80 85 90 91 94 105 107 109 110 116 122 125 126 135 146
Coulson, C.A.      146
Coupled Cluster (CC) methods      86 91 114 116 126 130 134 135 143 150 153 157
Crittenden, D.L.      147
Crystal92      94
Crystals      8 28 32 54 63 64 69 79 94 107 125 132 142
Curtis, L.A.      134
Damped core methods      56
Davidson, E.R.      146
Delaly, P.      85
Density functional methods      54 69 73 79 85 94 107 127 128 131 132 141 142 145 150 152 154
Density matrices      36 45
DePasquale, M.F.      57 97
Derivative methods      41 87 122 140
Descendent weighting      9 77 104 117 129
Determinants, sparse      131 138
Diedrich, D.L.      84 137
Difference methods      17 30 38 59 61 123 133
Diffusion equation      1 2 3 5 7 18 39 45 98 123
Dipole interactions      13 114
Dipole moments      38 81 87 118
Dirac equation      119
Dobrosavljevic, V.      62
Dolg, M.      106 114
Doll, J.D.      20 92 100 104
Drift term      8 17 34 49
Drummond, N.D.      155
Dupuis, M.      33 133
Edmiston, C.      126
Effective potentials      43 46 51 94 110 113 134 135 140
El Akramine, O.      143
Electron affinities      43 46 56 73 109
Electron correlation      11 23 24 29 32 37 44 55 56 67 80 97 105—107 112 120 132 135 138
Electron gas      18 30 102 141
Energy derivatives      41 87 122 140 153
Euler — Lagrange equations      125
Exchange correlation      107 141
Excited states      12 22 35 41 52 60 65 68 72 93 94 114 115 118 120 121 128 137 143 145 146
excitons      28 63
Eximer lasers      114
Fahy, S.      54 69 70 125
Fantoni, S.      149
Fermi, E.      2
Fermionization      136
Feynman — Kac path integrals      52
Feynman, R.P.      2
Filippi, C.      112 125 132 145
Fine structure      106
Fink, R.F.      126
Finnila, A.B.      92
Flad, H.-J.      106 114 135
Floating spherical Gaussian orbitals      150 153
Flynn, M.F.      86
Fokker — Planck equation      1 2 98
Foster, J.M.      33
Foulkes, W.M.C.      102 107 121 141
Fox, D.J.      134
Freeman, D.L.      100
Freihaut, B.H.      15 17
Frenklach, M.      140
Frost, A.A.      13 74
G1, G2 methods      127 134
GAMESS      94
Garmer, D.R.      44 47 53 153 155
Gauss, J.      153
Gaussian functions      24 64 86 131 138 155
Gaussian orbitals      43 53 69 119 150 153 155
Gaussian92      94
Gerber, R.B.      120
Ghosal, A.      154
Gianturco, F.A.      149
Giccotti, G.      124
Giorgini, S.      136
Godfrey, M.J.      102
Goldman, N.      148
Gomez, M.A.      92 100
Gordon, H.L.      20
Greeff, C.W.      113
Green's function methods      1 2 3 6 8 9 11 18 21 22 24 26—28 30 32 36 38 39 42 47—49 59 61 69 71 75 76 79 81 82
Gregory, J.K.      101 103
Grimes, R.M.      41
Grimm, R.C.      7 18 19 49
Grossman, J.C.      127 131 134 143 152
Guardiola, R.      86
Hamiltonian expressions      16 26 51 61 77 79 91 95 97 98 115 117 119 121 141 152
Hammond, B.L.      41 43 46 56
Handy, N.C.      23 37 67
Harrison, R.J.      37
Hartree — Fock method      11 13 44 46 57 76 80 88 94 102 111 113 125 126 128 133 143
Head-Gordon, M.      133 134
Healy, S.B.      132
Heavy atoms      46 56 108
Helgaker, T.      130
Hellmann — Feynman theorem      87
Helmbrecht, U.      27
Henebry, C.W.      62
Herbert, J.M.      115
Herzberg, G.      33
Hess, O.      78 98
Heys, D.W.      26
Hongo, K.      146
Hood, R.Q.      107 121 131
Huang, C.-J.      112
Hubbard model      76
Huiszoon, C.      98
Hund's rule      146
Hund, F.      146
Hurley, M.M.      43
Huzinaga, S.      51 111
Hydrogen bonding      72 103
Hylleraas functions      13 37 66 74 90 122
Hylleraas, E.A.      13 28
Iguchi, K.      43 51 88 135
Imaginary time      1 10 15 42 45 47 115 117 144
Infrared spectra      35 53 83 118 144 149
Internal coordinates      99 129
Ionization potentials      46 51 56 63 73 91 96 108
Irreducible representations      121
Iteration schemes      7 15 34 122 124 125 156
Jastrow, R.      11
Jellium model      85 110
Jiang, H.      154
Jordan, M.J.T.      147
Jorgensen, P.      130
Jung, J.O.      120
Kalia, R.K.      28 32
Kallay, M.      153
Kalos, M.H.      3 6 8 9 18 21—24 27 36 48 75 77 117
Kawazoe, Y.      146
Kenny, S.D.      97 102
Klein, D.J.      11
Klopper, W.      130
Kohn — Sham method      107 110 145 154
Kollias, A.C.      140
Koonin, S.E.      42 133
Kratzer, P.      132
Krauss, M.      94 113 126
Langfelder, P.      108
Lattice gauge theory      26 42 76
Lattices      5 26 42 48 54 64 70 76 79 107 142
Lee, H.-S.      115
Lee, M.A.      22—24 27 28 32 75
Legare, D.R.      87
Lennard-Jones (LJ) interactions      5 8 21 92 156
Lester, W.A., Jr.      25 31 33 39 41 43 46 47 56 77 80 81 93 105 113 127 133 140 143
Leung, W.-K.      102
Levesque, D.      8
Lewerenz, M.      93 104
Li, X.-P.      79
Light nuclei      58
Lin, X.      122
Linear scaling      131 134 138
Lipparini, E.      128
Liquid Drop model      27 68
liquid helium      5 27 48 68
Liquid-vapor interface      110
Liu, K.      103 118
Liu, K.S.      9 36 77 117
Local energies      4 13 17—19 29 35 37 38 41 43 44 55 56 61 67 69 73 74 80 87 105 112 113 117 119 122 125 138 141 155
Louie, S.G.      54 69 70 127
Lowther, R.E.      13 74 122
Lu, S.-I.      150 153
Luechow, A.      116 126 130 138
Lynch, D.L.      104
Ma, A.      155
Maezono, R.      146
Magnetic fields      16 26 70 95
Manten, S.      130 138
Many-body systems      11 35 42 79 92 133 139 141 148
Martin, R.M.      79 94
Martyna, G.J.      50
Matrix diagonalization      131 138
Matrix elements      4 138
McCourt, F.R.W.      104
McCoy, A.B.      115
McDowell, K.      20
McMillan, W.L.      5
Mella, M.      109
Mentch, F.      19 29 55 122
Metal-insulator transitions      70
Metropolis sampling      5 20 42 54 56 58 69 102 105 106 110 112 117 122 123
Metropolis, N.      2 5 10
Meyer, H.A.      2
Mijoule, C.      60
Miller, R.E.      35
Mitas, L.      73 91 94 152
Miyako, G.      111
Mizushima, Y.      51 88 135
Model Hamiltonians      51 61 79 91 97 115
Mohan, V.      63 66
Moller — Plesset theory      66 116 120 130
Monkhorst, H.J.      74
Moodley, M.      156
Moore, W.      1
Morales, Jr., J.      139
Morgan, J.D., III      74
Moroni, S.      117 144 149
Morosi, G.      109
Moskowitz, J.W.      23 24 37 39 47 61 67 122 124
Multiconfiguration self-consistent field (MCSCF) method      39 80 130 132
Multireference methods      106 153
Muto, Y.      66
Nanotubes      116
Natural orbitals      126
Needs, R.J.      97 102 107 121 141 146 155
Nekovee, M.      141
Neuhauser, D.      133
Neutron matter      139
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2020
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте