Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Apostol T.M. — Calculus (vol 2) | 115 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 251.E |
Streater R.S., Wightman A.S. — PCT, Spin and Statistics, and All That | 4, 89 |
Chebotarev A.M. — Lectures on quantum probability | 18 |
Felsager B. — Geometry, particles and fields | 70 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 467 |
Porter D., Stirling D.S.G. — Integral equations: a practical treatment, from spectral theory to applications | see “Self-adjoint” |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 467 I |
Ward R.S., Wells R.O. — Twistor geometry and field theory | 251 |
Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 17 |
Artin M. — Algebra | 253 |
Douglas R.G. — Banach algebra techniques in operator theory | 84 |
Liddle A., Lyth D.H. — Cosmological Inflation and Large-Scale Structure | 169 |
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 150 |
Borwein P., Choi S., Rooney B. — The Riemann Hypothesis | 40, 127 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 206 |
Araki H. — Mathematical Theory of Quantum Fields | 205 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory | see “Symmetric operator” |
Greiner W. — Quantum mechanics. An introduction | 427 |
Geroch R. — Mathematical physics | 290 |
Delves L.M. (ed.), Walsh J. (ed.) — Numerical Solution of Integral Equations | 51, 109—113, 126 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators | see “Symmetric operator” |
Born M. — Natural philosophy of cause and chance (The Waynflete lectures) | 93 |
Rammer J. — Quantum transport theory | 21, 39 |
Rudin W. — Functional analysis | 298 |
Lang S. — Real Analysis | 168 |
Ito K. — Encyclopedic Dictionary of Mathematics | 251.E |
Jauch J.M. — Foundations of quantum mechanics | see Symmetrical |
Pettifor D.G. — Bonding and structure of molecules and solids | 52, 123 |
Ablowitz M.J., Segur H. — Solitons and the Inverse Scattering Transform | 12, 20, 32, 44 |
Dieudonne J. — Foundation of Modern Analysis | 11.5 |
Elliot P.D.T.A. — Probabilistic Number Theory One | 12 |
Prigogine I. — Nonequilibrium statistical mechanics | 6, 15, 16, 17, 18, 111 |
Yamamoto Y., Imamoglu A. — Mesoscopic quantum optics | 2 |
Nagaosa N. — Quantum field theory in condensed matter physics | 3 |
Bube R.H. — Electronic Properties of Crystalline Solids: An Introduction to Fundamentals | 35, 36 |
Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 23—28, 32, 47, 225—227, 267—268 |
Lopuzanski J. — An introduction to symmetry and supersymmetry in quantum field theory | 35, 36 |
Lee T.D. — Practicle physics and introduction to field theory | 4 |
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | (see “Linear operator, symmetric and self-adjoint”) |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | (see “Symmetric operator”) |
Park D. — Introduction to the quantum theory | 70, 75, 135—157 |
Slichter Ch.P. — Principles of magnetic resonance. With examples from solid state physics | 23 |
Fuhrmann P.A. — A Polynomial Approach to Linear Algebra | 164 |
Gray C.G., Gubbins K.E. — Theory of molecular fluids | 445, 562 |
Economou E.N. — Green's Functions in Quantum Physics | 3, 5, 14, 15, 17, 19, 33, 391 |
Harmand P., Werner D., Werner W. — M-Ideals in Banach Spaces and Banach Algebras | 17, 36, 40, 246 |
Mazo R.M. — Brownian Motion: Flucuations, Dynamics, and Applications | 131 |
Halzen F., Martin A.D. — Quarks and Leptons: An Introductory Course in Modern Particle Physics | 36 |
Elliot P.D.T.A. — Probabilistic Number Theory Two: Central Limit Theorems | 12 |
Prigogine I. — From being to becoming: time and complexity in the physical sciences. | 26, 54, 181, 191 |
Grosche C., Steiner F. — Handbook of Feynman path integrals | 23, 67 |
Auletta G. — Foundations and Interpretation of Quantum Mechanics | 47 |
Saxe K. — Beginning functional analysis | 114 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 107, 438 |
Dieudonne J. — Foundation of Modern Analysis | 11.5 |
Phillips P. — Advanced Solid State Physics | 18 |
Gottfried K., Weisskopf V.F. — Concepts of Particle Physics | 10 |
Streater R.F., Wightman A.S. — PCT, spin and statistics and all that | 4, 89 |
Goertzel G. — Some Mathematical Methods of Physics | 70 |
Nouredine Z. — Quantum Mechanics: Concepts and Applications | 90 |
Prigogine I. — Monographs in Statistical Physics And Thermodynamics. Volume 1. Non-equilibrium statistical mechanics | 6, 15, 16, 17, 18, 111 |
Kreyszig E. — Introductory functional analysis with applications | 201, 460 |
Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 193 |
Mandel L., Wolf E. — Optical Coherence and Quantum Optics | 440 |
Hausner M., Schwartz J.T. — Lie groups, Lie algebras | 7 |
Meijer P.H.E. — Group Theory: The Application to Quantum Mechanics | 21, 22, 37, 40 |
Kemble E. C. — The fundamental principles of quantum mechanics | 203, 251, 512, 524 |
Jauch J.M. — Foundations Of Quantum Mechanics | see Symmetrical |
Douglas R.G. — Banach algebra techniques in operator theory | 84 |
McQuarrie D.A. — Statistical Mechanics | 508, 537, 575, 588, 615, 616, 617 |
Carroll R.W. — Mathematical physics | 60 |
Schurmann M. — White Noise on Bialgebras | 16 |
Davies J.H. — The physics of low-dimensional semiconductors : an introduction | 15 |
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 328 |
Laurens Jansen — Theory of Finite Groups. Applications in Physics | 194—195 |
Boyd R.W. — Nonlinear Optics | 146 |
Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 115 |
Sakurai J.J. — Modern quantum mechanics | 27, 45, 66, 71, 85, 90, 96, 98, 144, 156—157, 178—179, 274, 279 |
Constantinescu F., Magyari E. — Problems in quantum mechanics | 2 |
Geroch R. — Mathematical physics | 290 |
Farina J.E.G. — Quantum theory of scattering processes | 109 |
Lions J-L., Dautray R. — Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods | 353 |
Landau L.D., Lifshitz E.M. — Course of Theoretical Physics (vol.3). Quantum Mechanics. Non-relativistic Theory | 11 |
Singh R., Manhas J. — Composition Operators on Function Spaces (North-Holland Mathematics Studies) | 174 |
Cheney W. — Analysis for Applied Mathematics | 83 |
Park D. — Introduction to the Quantum Theory (Pure & Applied Physics) | 70—75, 135—157 |
Geroch R. — Mathematical physics | 290 |
Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | see "operator, hermitian" |