Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Guillemin V., Pollack A. — Differential topology | 14 |
Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | 551 |
Berger M. — A Panoramic View of Riemannian Geometry | 59, 183 |
Eliashberg Y., Mishachev N. — Introduction to the h-Principle | 1, 34, 48 |
Lee J.M. — Differential and Physical Geometry | 238 |
Felsager B. — Geometry, particles and fields | 517 |
Hicks N. — Notes on differential geometry | 13 |
Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 15 |
Agrachev A.A., Sachkov Yu.L. — Control theory from the geometric viewpoint | 62 |
Lee J.M. — Introduction to Smooth Manifolds | 94 |
Millman R.S., Parker G.D. — Elements of Differential Geometry | 223 |
Lojasiewicz S. — Introduction to Complex Analytic Geometry | 122 |
Sepanski R.M. — Compact Lie Groups | 2 |
Cabanes M., Enguehard M., Bollobas B. (Ed) — Representation Theory of Finite Reductive Groups (New Mathematical Monographs Series), Vol. 1 | 398 |
Moerdijk I., Mrcun J. — Introduction to Foliations and Lie Groupoids | 2 |
Terng Ch. — Critical Point Theory and Submanifold Geometry | 73 |
Joyce D.D. — Riemannian holonomy groups and calibrated Geometry | 65 |
Hirzebruch F. — Topological Methods in Algebraic Geometry | 198 |
Varadarajan V.S. — Lie Groups, Lie Algebras, and Their Representations | 16 |
Gallot S., Hulin D. — Riemannian Geometry | 1.15 ff., 5.10. |
Hansen G.A., Zardecki A., Douglass R.A. — Mesh Enhancement: Selected Elliptic Methods, Foundations and Applications | 276, 497 |
Kolar I., Michor P.W., Slovak J. — Natural Operations in Differential Geometry | 11 |
Ueno K. — Algebraic Geometry 2: Sheaves and Cohomology | 99 |
Lima E.L. — Fundamental Groups and Covering Spaces | 99 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 111 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 111 |
Tamme G. — Introduction to Etale Cohomology | 134 |
Naber G.L. — Topology, Geometry and Gauge Fields | 3 |
Smith S.W. — Digital Signal Processing | see under “Convolution” |
Besse A.L. — Einstein Manifolds | 29, 37 |
Liu Q., Erne R. — Algebraic Geometry and Arithmetic Curves | 96, 200 |
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2 | I-9 |
Brickell F., Clark R.S. — Differentiable Manifolds | 68 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 429 |
Morita S. — Geometry of differential forms | 34 |
Golubitsky M., Guillemin V. — Stable Mappings and Their Singularities | 6 |
Knutson D. — Algebraic Spaces | 42 |
Carmo M.P. — Differential geometry of curves and surfaces | 433 |
Morita Sh. — Geometry of Differential Forms | 34 |
Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 472 |
Aubin T. — Nonlinear Analysis on Manifolds: Monge-Ampere Equations | 1 |
De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 21 |
Brocker Th., Dieck T.T. — Representations of Compact Lie Groups | 27, 40 |
Held A. (ed.) — General relativity and gravitation. 100 years after the birth of Albert Einstein (volume 1) | 472 |
do Carmo M.P. — Riemannian geometry | 11 |
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 3, 5, 8, 55 |
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 46 |
Held A. (ed.) — General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, Vol. 2 | 472 |
Filipovic D. — Consistency problems for Heath-Jarrow-Morton interest rate models | 96 |
Matveev S.V. — Lectures on Algebraic Topology | 25 |
Sternberg Sh. — Lectures on Differential Geometry | 42 |
Fomenko À.Ò., Mishehenko A.S. — A Short Course in Differential Geometry and Topology | 84 |
Rushing T.B. — Topological Embeddings | 276 |
Tamura I. — Topology of lie groups, I and II | 63 |
Libermann P., Marle Ch.M. — Symplectic Geometry and Analytical Mechanics | 343 |
Bertlmann R.A. — Anomalies in Quantum Field Theory | 454 |
Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | 152 |
Straumann N. — General relativity and relativistic astrophysics | 6f |
Price J.F. — Lie groups and compact groups | 13 |
Goryunov V.I., Lyashko O.V. — Dynamical Systems VI: Singularity Theory I, Vol. 6 | 190 |
Fischer G. — Complex Analytic Geometry | 19, 100 |
Narasimhan R. — Analysis on Real and Complex Manifolds | 141 |
Sachs R.K., Wu H. — General relativity for mathematicians | 3 |
Haller G. — Chaos Near Resonance | 376 |
Mangiarotti L., Sardanashvily G. — Connections in Classical and Quantum Field Theory | 3 |
Bishop R.L., Crittenden R.J. — Geometry of manifolds | 132, 185 |
Hyers D.H., Isac G., Rassias T.M. — Stability of functional equations in several variables | 36 |
Lee J.M. — Differential and physical geometry | 238 |
Geckeler S. — Optical fiber transmission systems | 117, 119 |
Postnikov M. — Lectures in Geometry. Semestr V. Lie Groups and Lie Algebras | 228 |
Morita S. — Geometry of Differential Forms | 34 |
Brickell F., Clark R.S. — Differentiable manifolds | 68 |
Hermann R. — Differential geometry and the calculus of variations | 30, 32 |
Massey W.S. — A basic course in algebraic topology | 32—33 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 241, 549 |
IItaka S. — Algebraic Geometry: An Introduction to Birational Geometry of Algebraic Varieties | 61, 71, 77, 93 |
Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 11 |
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 1 | 9 |
Massey W.S. — Algebraic Topology: an introduction | 52 |
Smart W.M. — Textbook on Spherical Astronomy | 368 |
Porteous I.R. — Clifford Algebras and the Classical Groups | 213, 222 |
Sundaresan K. — Geometry and Nonlinear Analysis in Banach Spaces | 104 |
Vasil'ev V. A., Sossinski A. — Introduction to Topology | 60 |
Shick P.L. — Topology: Point-set and geometric | 181 |
Sundaresan K. — Geometry and Nonlinear Analysis in Banach Spaces | 104 |
de Leon M., Rodrigues P.R. — Methods of differential geometry in analytical mechanics | 11 |
Tamme G. — Introduction to Étale Cohomology | 134 |
Loomis L.H., Sternberg S. — Advanced calculus | 399 |
Tuynman G.M. — Supermanifolds and Supergroups: Basic Theory | 214 |
Frankel T. — The geometry of physics: an introduction | 169, 173 |
Naber G.L. — Topology, Geometry and Gauge Fields | 3 |
Gabriel P., Roiter A.V., Kostrikin A.I. (ed.) — Encyclopaedia of Mathematical Sciences. Volume 73: algebra VIII | 21 |
Hartshorne R. — Algebraic Geometry | 120 |
Pilyugin S.Y. — Space of Dynamical Systems with the Co-Topology | 3 |
Pier J.-P. — Mathematical Analysis during the 20th Century | 290 |
Margalef-Roig J., Outerelo Dominguez E. — Differential topology | 128 |
Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 168 |
Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 99 |
Deligne P. — Equations differentielles a points singuliers reguliers | 2 |
Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory | 143, 145 |
Milnor J.W., Stasheff J.D. — Characteristic Classes. (Am-76), Vol. 76 | 30f, 49f, 54, 121 |
Frankel T. — The geometry of physics: An introduction | 169, 173 |
Lord E., Wilson C. — The Mathematical Description of Shape and Form (Mathematics and Its Applications) | 47 |
Joyce D. — Riemannian Holonomy Groups and Calibrated Geometry (Oxford Graduate Texts in Mathematics) | 65 |
Sagle A. A. — Introduction to Lie groups and Lie algebras | 49, 70 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 241, 549 |
Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 30 |
Morita S. — Geometry of Differential Forms (Translations of Mathematical Monographs, Vol. 201) | 34 |