| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Bartle R.G. — The Elements of Real Analysis | 274 |
| Hunter J.K., Nachtergaele B. — Applied Analysis | 344 |
| Rudin W. — Principles of Mathematical Analysis | 314 |
| Shorack G.R. — Probability for statisticians | 37 |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 221.B |
| Meyn S.P., Tweedie R.L. — Markov Chains and Stochastic Stability | 516 |
| Allen R.L., Mills D.W. — Signal analysis. Time, frequency, scale and structure | 225, 232—240 |
| Fishman G.S. — Monte Carlo: concepts, algorithms, and applications | 64, 69 |
| Gray R.M., Davisson L.D. — Introduction to statistical signal processing | 423 |
| Henrici P. — Applied and Computational Complex Analysis (Vol. 2) | 258, 270 |
| Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 119 |
| Rudin W. — Real and Complex Analysis | 19 |
| de Branges L., Rovnyak J. — Square summable power series | 87—91 |
| Porter D., Stirling D.S.G. — Integral equations: a practical treatment, from spectral theory to applications | 358 |
| Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 119 I |
| Steen S.W.P. — Mathematical Logic with Special Reference to the Natural Numbers | 549, 560 |
| Widder D.V. — Advanced calculus | 185 |
| Hayman W.K. — Multivalent Functions | 31 |
| Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 56 |
| Loeve M. — Probability Theory (part 2) | 29 |
| Pugovecki E. — Quantum mechanics in hilbert space | see Integral |
| Adams R.A. — Sobolev Spaces | 15, 17 |
| Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 43 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | v, 53, 66, 68, 101, 453 |
| Ferguson T.S. — Mathematical Statistics. A Decision Theoretic Approach | 7, 138 |
| Halmos P.R. — Measure Theory | 106 |
| Estep D.J. — Practical Analysis in One Variable | 473 |
| Kurtz D.S., Swartz C.W. — Theories of Integration | 97, 99 |
| Borwein P., Choi S., Rooney B. — The Riemann Hypothesis | 412 |
| Pfeffer W.F., Fulton W. (Ed) — Riemann Approach to Integration: Local Geometric Theory | 80 |
| Resnick S.I. — A probability path | 139 |
| Wise G.L., Hall E.B. — Counterexamples in Probability and Real Analysis | 103, 110, 137, 138 |
| Pugh C.C. — Real Mathematical Analysis | 376 |
| Malliaris A.G., Brock W.A. — Stochastic methods in economics and finance | 9, 73 |
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 1044—1050, 1071 |
| Agoshkov V.I., Dubovsky P.B. — Methods for Solving Mathematical Physics Problems | 7 |
| Atkinson K.E., Han W. — Theoretical Numerical Analysis: A Functional Analysis Framework | 16 |
| Royden H.L. — Real Analysis | 79 |
| Eschrig H. — The Fundamentals of Density Functional Theory | 113 |
| Shreve S.E. — Stochastic Calculus for Finance 2 | 15 |
| Rudin W. — Functional analysis | 372 |
| Intriligator M.D., Arrow K.J. — Handbook of Mathematical Economics (vol. 4) | 1661 |
| Lang S.A. — Undergraduate Analysis | 262 |
| Rall D. — Computational Solution to Nonlinear Operator Equations | 21, 27, 214 |
| Royden H.L. — Real Analysis | 79 |
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 1044—1050, 1071 |
| Lang S. — Real Analysis | 296 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 221.B |
| Gnedenko B.V., Kolmogorov A.N. — Limit Distributions for Sums of Independent Random Variables | 19 |
| Taylor J.C. — An Introduction to Measure and Probability | 48 |
| Rudin W. — Real and complex analysis | 19 |
| Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 774 |
| Stakgold I. — Green's Functions and Boundary Value Problems | 36 |
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 1044—1050, 1071 |
| Aubin T. — Nonlinear Analysis on Manifolds: Monge-Ampere Equations | 75, 77 |
| Bogachev V.I. — Measure Theory Vol.2 | I: 116, 118 |
| Strichartz R.S. — The way of analysis | 623 |
| Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 293 ff. |
| Bellman R.E. — Introduction to the mathematical theory of control processes (Volume I: Linear Equations and Quadratic Criteria) | 50 |
| Hu S.-T. — Elements of real analysis | 97 |
| Adomian George — Nonlinear stochastic operator equations | 229 |
| Tricomi F.G. — Integral equations | 9 |
| Billingsley P. — Probability and Measure | 224, 225, 229 |
| Miller W. — Symmetry Groups and Their Applications | 214, 411 |
| Aczel J., Dhombres J. — Functional equations in several variables with applications to mathematics, information theory and to the natural and social sciences | 55, 92, 235, 8 |
| Axellson O., Barker V.A. — Finite Element Solution of Boundary Value Problems. Theory and Computation | 102, 115 |
| Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 64, 72, 167, 170 |
| Olver P.J., Shakiban C. — Applied linear. algebra | 135, 594 |
| Kaiser D. — A Friendly Guide to Wavelets | 21 |
| Steele M.J. — Stochastic Calculus and Financial Applications | 277 |
| Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 37ff. |
| Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | see Part II |
| Steeb W.-H. — Problems and Solutions in theoretical and mathematical physics. Volume 1. Introductory level | 153 |
| Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 166 |
| Kaiser G. — Friendly Guide to Wavelets | 21 |
| Bridges D.S. — Foundations Of Real And Abstract Analysis | 95, 98 |
| Adomian G. — Stochastic Systems | 20 |
| Rogosinski W.W. — Volume and integral | 6.6 |
| Goffman C., Pedrick G. — First course in functional analysis | 120—24 |
| Kreyszig E. — Introductory functional analysis with applications | 62 |
| Shilov G.E. — An introduction to the theory of linear spaces | 257ff. |
| Courant R., Hilbert D. — Methods of Mathematical Physics. Volume 1 | 108—111 |
| Dienes P. — The Taylor series: An introduction to the theory of functions of a complex variable | 450 |
| Gnedenko B.V., Kolmogorov A.N., Chung K.L. — Limit Distributions for Sums of Independent Random Variables. Revised Edition | 19 |
| Aliprantis C. — Principles of real analysis | 127, 132, 163, 166 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 46 |
| Caratheodory C. — Theory of Functions of a Complex Variable. Volume 2 | 43 |
| Hille E. — Methods in classical and functional analysis | 125 |
| Lin Y. — General Systems Theory: A Mathematical Approach | 328 |
| Hartman S., Mikusinski J. — The theory of Lebesgue measure and integration | 43, 53, 156 |
| Vladimirov V. S. — Equations of mathematical physics | 5, 6 |
| Kolmogorov A.N., Fomin S.V. — Measure, Lebesgue Integrals, and Hilbert Space | 63, 76, 106 |
| Carroll R.W. — Mathematical physics | 335 |
| Lang S. — Undergraduate analysis | 262 |
| Kuttler K.L. — Modern Analysis | 136, 140 |
| Stakgold I. — Green's functions and boundary value problems | 36 |
| Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 164 |
| Kestelman H. — Modern theories of integration | 114, 128, 140, 157 |
| Ash R. — Basic probability theory | 114 |
| Lane S.M. — Mathematics, form and function | 179 |
| Howes N.R — Modern Analysis and Topology | 249 |
| Kanwal R.P. — Linear Integral Equations: Theory and Techniques | 4 |
| Naber G.L. — Topology, Geometry and Gauge Fields | 275 |
| Krall A.M. — Hilbert Space, Boundary Value Problems, and Orthogonal Polynomials | 3, 8 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | v, 53, 66, 68, 101, 453 |
| Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 434 |
| Jeffreys H. — Methods Of Mathematical Physics | 29 |
| Lasota A., Mackey M.C. — Probabilistic Properties of Deterministic Systems | 16—18 |
| Cohen G.L. — A Course in Modern Analysis and Its Applications | 281 |
| Williams D. — Probability with Martingales | (Chapter 5) |
| Collatz L. — Functional analysis and numerical mathematics | 40 |
| De Barra G — Measure theory and integration | 54, 55 |
| Stillwell J. — Mathematics and its history | 317, 318 |
| Steen S. — Mathematical Logic with Special Reference to the Natural Numbers | 549, 560 |
| Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics | 59 |
| Hubbard B. — The World According to Wavelets: The Story of a Mathematical Technique in the Making | 182—183, 217—219 |
| Stakgold I. — Boundary value problems of mathematical physics | 104—105 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 46 |
| Mac Lane S. — Mathematics: Form and Function | 179 |
| Badii R., Politi A. — Complexity: Hierarchical structures and scaling in physics | 286 |
| Kline M. — Mathematical thought from ancient to modern times | 1044—1050, 1071 |
| Dennery P., Krzywicki A. — Mathematics for Physicists | 184 |
| Steen S. — Mathematical Logic | 549, 560 |
| Alexanderson G. — The harmony of the world: 75 years of Mathematics Magazine MPop | 123, 129—131 |