Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Bartle R.G. — The Elements of Integration | 5 |
Bartle R.G. — The Elements of Real Analysis | 47 |
Apostol T.M. — Calculus (vol 1) | 25 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 9, 28, 29 |
Rudin W. — Principles of Mathematical Analysis | 4 |
Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 4 |
Hilgert J. — Analysis I - IV | 28 |
Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 5 |
Dodge C.W. — Sets, logic & numbers | 236 |
Chagrov A., Zakharyaschev M. — Modal logic | 202 |
Meirovitch L. — Methods of analytical dynamics | 177, 234, 243, 501, 502, 504 |
Hughes B.D. — Random Walks and Random Environments: Random Environments (òîì 2) | 15 |
Pareigis B. — Categories and functors | 81 |
Berkovitz L.D. — Convexity and Optimization in Rn | 12—14 |
Lee J.M. — Introduction to Topological Manifolds | 343 |
Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions | 405 |
Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 9—10 |
Loeve M. — Probability Theory (part 2) | 56, 103 |
Heikkila S., Lakshmikantham V. — Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations | 3 |
Dodge C.W. — Foundations of algebra and analysis | 236 |
Gupta M.M., Jin L., Homma N. — Static and dynamic neural networks | 255 |
Grillet P.A. — Abstract Algebra | See greatest lower bound |
Gierz G., Hofmann K.H., Keimel K. — Continuous Lattices and Domains | 1 O—1.1 |
Bogachev V.I. — Measure Theory Vol.1 | 277 |
Liao X., Wang L., Yu P. — Stability of Dynamical Systems, Vol. 5 | 14 |
Halmos P.R. — Hilbert Space Problem Book | 14 |
Halmos P.R. — Measure Theory | 1 |
Halmos P.R., Givant S. — Logic as Algebra | 51, 95, 102 |
Estep D.J. — Practical Analysis in One Variable | 454 |
Engel K. — Sperner theory | 6 |
Enderton H.B. — Elements of set theory | 171 |
James I.M. — Topological and Uniform Spaces | 20, 65, 115, 143, 145 |
Burris S., Sankappanavar H.P. — A Course in Universal Algebra | 7 |
Searcid M. — Metric Spaces | 256 |
Hrbacek K., Jech T. — Introduction to Set Theory | 35 |
Loeve M. — Probability Theory (part 1) | 56, 103 |
Hijab O. — Introduction to Calculus and Classical Analysis (Undergraduate Texts in Mathematics) | 4 |
Berberian S.K. — Fundamentals of Real Analysis | 73 |
Pugh C.C. — Real Mathematical Analysis | 17 |
Olds C.D., Davidoff G. — Geometry of Numbers | 146 |
Nagashima H., Baba Y. — Introduction to chaos: physics and mathematics of chaotic phenomena | 121 |
Morris S.A. — Topology without tears | 54 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 21 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 21 |
Khuri A.I. — Advanced calculus with applications in statistics | 9, 73 |
Spivak M. — Calculus | 120 |
Taylor J.C. — An Introduction to Measure and Probability | 20 |
Burn R.P. — Numbers and Functions: Steps to Analysis | 4.71—4.78, 4.81—4.84, 7.5—7.7 |
Rudin W. — Real and complex analysis | 7 |
Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 25 |
Halmos P.R. — Finite-Dimensional Vector Spaces | 176 |
Stakgold I. — Green's Functions and Boundary Value Problems | 2 |
Weir A.J. — Lebesgue Integration and Measure | 9 |
Bogachev V.I. — Measure Theory Vol.2 | I; 277 |
Strichartz R.S. — The way of analysis | 74 |
Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 51 |
Pedicchio M. C., Tholen W. — Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory | I.21 |
Allaire G. — Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation | 285 |
Hu S.-T. — Elements of real analysis | 21, 61 |
Munkres J. — Topology | 27 |
D'Angelo J.P., West D.B. — Mathematical Thinking: Problem-Solving and Proofs | 257, 260, 2, 268, 9, 284, 302—, 3, 313, 338, 9, 342, 352 |
Kozen D.C. — The Design And Analysis Of Algorithms | 38 |
Nagata M. — Field Theory | 5 |
Simmons G.F. — Introduction to topology and modern analysis | 45 |
Binmore K. — Fun and Games: A Text on Game Theory | 223 |
Pears A.R. — Dimension theory of general spaces | 1 |
Walley P. — Statistical reasoning with imprecise probabilities | 58 |
Bazaraa M.S., Sherali H.D., Shetty C.M. — Nonlinear Programming: Theory and Algorithms | 760 |
Arbib M.A., Manes E.G. — Arrows structures and functors. The categorical imperative | 43 |
Bridges D.S. — Foundations Of Real And Abstract Analysis | 7 |
Browder A. — Mathematical Analysis: An Introduction | 15 |
Adams P.W., Smith K., Výborný D. — Introduction to Mathematics with Maple | 117 |
Lefschetz S. — Introduction to topology | 27 |
Klaas G., Leedham-Green C.R., Plesken W. — Linear Pro-p-Groups of Finite Width | III.1.9, R.6.7 |
Jameson G. — Ordered Linear Spaces | vii |
Rosser J.B. — Simplified independence proofs. Boolean valued models of set theory | 24, 28, 34, 35, 38, 39, 47, 164, 165, 169, 173, 210, 213 |
Aliprantis C. — Principles of real analysis | 16 |
Gleason A. — Fundamentals of Abstract Analysis | 77 |
Semadini Z. — Banach Spaces of Continuous Functions. Vol. 1 | 34 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 5 |
Abramovich Y.A., Aliprantis C.D. — An Invitation to Operator Theory | 15 |
Hille E. — Methods in classical and functional analysis | 163 |
Courant R., John F. — Introduction to Calculus and Analysis. Volume 1 | 97 |
McShane E.J., Botts T.A. — Real Analysis | 20, 28 |
Lefschetz S. — Introduction to Topology | 27 |
Stakgold I. — Green's functions and boundary value problems | 2 |
Hsiung C.-C. — A first course in differential geometry | 9 |
Cloud M.J., Drachman B.C. — Inequalities: with applications to engineering | 4 |
Hinman P.G. — Fundamentals of Mathematical Logic | 230 |
Daepp U., Gorkin P. — Reading, writing and proving. Close look at mathematics | 133, 199 |
Cohen G.L. — A Course in Modern Analysis and Its Applications | 22 |
Tourlakis G.J. — Lectures in Logic and Set Theory: Set Theory | 347 |
Collatz L. — Functional analysis and numerical mathematics | 46 |
Rektorys K. — Survey of Applicable Mathematics.Volume 2. | I 5 |
Driver R.D. — Ordinary and delay differential equations | 35 |
James I.M. (ed.) — Topological and Uniform Spaces | 20, 65, 115, 143, 145 |
Abhyankar S.S. — Lectures on Algebra Volume 1 | 381 |
De Barra G — Measure theory and integration | 18 |
Comfort W.W., Negrepontis S. — The Theory of UltraFilters | 3 |
Cheney W. — Analysis for Applied Mathematics | 6 |
Falconer K. — Fractal geometry: mathematical foundations and applications | 5 |
Rautenberg W. — A Concise Introduction to Mathematical Logic (Universitext) | 39 |
Abramovich Y., Aliprantis C. — An Invitation to Operator Theory (Graduate Studies in Mathematics, V. 50) | 15 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 5 |
D'Angelo J.P., West D.B. — Mathematical thinking: problem-solving and proofs | 257, 260—262, 268—269, 284, 302—303, 313, 338—339, 342, 352 |
Apostol T. — Mathematical Analysis, Second Edition | 9 |
Klein E. — Mathematical methods in theoretical economics | 43 |
Mangasarian O. — Nonlinear programming | 187, 195 |
Truss J.K. — Foundations of Mathematical Analysis | 97 |
Hrbacek K., Jech T. — Introduction to Set Theory, Third Edition, Revised, and Expanded (Pure and Applied Mathematics (Marcel Dekker)) | 35 |
Truss J. — Foundations of mathematical analysis | 97 |
J. K. Truss — Foundations of mathematical analysis MCet | 97 |