|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Berkovitz L.D. — Convexity and Optimization in Rn |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Affine hull 74
Affine transformations 78—114
Algebra of sets 4—5
Alternative theorems, convex functions 113—117
Alternative theorems, convex sets, linear inequalities 61—68
Alternative theorems, convex sets, linear inequalities, Farkas’s lemma 63—65 67—68
Alternative theorems, convex sets, linear inequalities, Gale’s theorem 68
Alternative theorems, convex sets, linear inequalities, Gordan’s theorem 65—67
Alternative theorems, convex sets, linear inequalities, Motzkin’s theorem 66—67
Anticycling routine, simplex method, phase I procedure 254
Anticycling routine, termination and cycling 250 254
Backward transformation, revised simplex method 259
Barycentric coordinates 74
Basic solution, simplex method 231
Basic variables, phase II procedure 235—245
Basic variables, simplex method 230
Bland’s rule, simplex method, termination and cycling 248—250
Bolzano—Weierstrass property 15
Boundary points, convex function optimization 137
Boundary points, supporting hyperplanes 56—57
Canonical linear programming problem 234—260
Canonical linear programming problem, optimization 144
Canonical linear programming problem, simplex method 224—225
Canonical linear programming problem, simplex method, extreme points, feasible sets 225—229
Canonical linear programming problem, simplex method, phase I 251—255
Canonical linear programming problem, simplex method, revised simplex method 258—260
Caratheodory theorem 41—43
Cartesian products 16—18
Cauchy—Schwarz inequality 3—4
Closed half spaces 35—36
Closed line segments 31
Closed sets 6—8
Closest point characterization 50—51
Coercive functions 20
Colonel Blotto game 122—127
Compactness 14—15
Compactness, convex sets, separation theorem 54—55
Compactness, supporting hyperplanes, extreme points 58—61
Complementary slackness condition, linear programming 141—145
Completeness property, real numbers 12—13
Concave functions, defined 88
Concave functions, game theory 117
Consistency, convex programming, perturbation theory 192—200
Consistency, convex programming, problem II (CPII) 180—181
Consistency, strong in (CPII) 183—187
Constraint qualifications, convex programming, necessary conditions 183—188
Constraint qualifications, convex programming, quadratic programming 212
Constraint qualifications, differentiable nonlinear programming 154—163
Constraint qualifications, differentiable nonlinear programming, Kuhn—Tucker constraint qualification 162—163
Constraint qualifications, differentiable nonlinear programming, tangential constraints 165—178
Continuity 8—11
Convex cones 44 62
Convex functions, alternative theorems 113—117
Convex functions, definitions and properties 87—101
Convex functions, differentiable functions 106—113
Convex functions, differentiable nonlinear programming 159—163
Convex functions, game theory applications 117—121
Convex functions, Jensen’s inequality 90—91
Convex functions, optimization problems 137—139
Convex functions, partial derivatives 99 106—109
Convex functions, subgradients 102—106
Convex hulls 41—43
Convex hulls, extreme points 85—86
Convex programming problem I (CPI), problem statement 179—180
Convex programming problem II (CPII), problem dual to (DCPII) 200—207
Convex programming problem II (CPII), problem statement 180—181
Convex programming, duality, geometric interpretation 207—210
Convex programming, duality, Lagrangian duality 200—207
Convex programming, duality, linear programming 215—221
Convex programming, duality, quadratic programming 212
Convex sets, affine geometry 69—80
Convex sets, affine geometry, barycentric coordinates 74
Convex sets, affine geometry, dependence 71—72
Convex sets, affine geometry, hull dimensions 74
Convex sets, affine geometry, independence 72—73
Convex sets, affine geometry, linear manifold 69—71
Convex sets, affine geometry, linear transformations 78
Convex sets, affine geometry, nonvoid interiors 76—77
Convex sets, affine geometry, parallel subspace 70
Convex sets, affine geometry, simplex dimension 76
Convex sets, extreme points 56—61
Convex sets, hyperplane support 56—61
Convex sets, linear inequalities, systems of 61—68
Convex sets, linear inequalities, systems of, Farkas’s lemma 63—65 67
Convex sets, linear inequalities, systems of, Gale’s lemma 68
Convex sets, linear inequalities, systems of, Gordan’s lemma 65—67
Convex sets, linear inequalities, systems of, Motzkin’s lemma 66—67
Convex sets, nonempty relative interiors 81—82
Convex sets, properties of 35—45
Convex sets, properties of, Caratheodory theorem 41—42
Convex sets, properties of, convex cone 44
Convex sets, properties of, convex hull 41 43
Convex sets, properties of, half spaces 35—36
Convex sets, properties of, points, convex combinations 40—41
Convex sets, properties of, scalar combinations 37
Convex sets, relative interior points 80—81
Convex sets, separation theorems 45—56
Convex sets, separation theorems, disjoint convex sets 53—54 81
Convex sets, separation theorems, proper separation 46 53
Convex sets, separation theorems, strict separation 46
Convex sets, separation theorems, strong separation 47—49 54
Current basis, simplex method 234—245
Current value, simplex method 234—245
Cycling, simplex method 245—250
Degenerate basic solution, simplex method 231 245—247
Derivatives, convex functions 94—96 99
Derivatives, Euclidean n-space , differentiation 22—29
Derivatives, Euclidean n-space , linear transformation 22—25
Derivatives, second derivative test, differentiable, unconstrained problems 130—136
Differentiability, convex functions 99 106—113
Differentiability, Euclidean n-space , linear transformation 24
Differentiable nonlinear programming, first-order conditions 145—163
Differentiable nonlinear programming, second-order conditions 163—178
Differentiable unconstrained problems 129—136
Differentiable unconstrained problems, linear regression 134—135
Differentiable unconstrained problems, local minimizer 131
Differentiable unconstrained problems, orthogonal mean-square approximations 135—136
Differentiable unconstrained problems, positive semidefinite functions 131—132
Differentiable unconstrained problems, second derivative test 131
Differentiable unconstrained problems, strict minimizers 130—136
Differentiation, Euclidean n-space 25—29
Directional derivatives, convex functions 95—96
Disjoint convex sets, hyperplane separation 53
Duality theorems, convex programming, dual quadratic programming (DQP) 214—215
Duality theorems, convex programming, gaps, convex programming 202—207
Duality theorems, convex programming, gaps, quadratic programming 212
Duality theorems, convex programming, geometric interpretation 207—210
Duality theorems, convex programming, Lagrangian duality 200—207
Duality theorems, convex programming, linear programming 215—221
Elementary operations, simplex method 232—234
Empty set 4—5
Entering variable, revised simplex method 256—260
Entering variable, simplex method 239—245
Epigraphs, convex functions 88—89
Equality constraints, convex programming problem (CPI) 180
Equality constraints, differentiable nonlinear programming, necessary conditions 146—159 168—171
Equality constraints, differentiable nonlinear programming, sufficient conditions 159—160 172—177
Equilibrium prices 196
Equivalent norms, Euclidean n-space 16—18
Eta file, revised simplex method 258—260
Eta matrix, revised simplex method 257—260
Euclidean n-space , defined 1
Euclidean n-space , metric topology 5—8
Euclidean n-space , vectors 1—4
Euclidean norm 2—3
Extreme points, convex sets 56—61 85
Extreme points, simplex method, feasible sets 225—230
Farkas’s lemma, differentiable nonlinear programming 162—163
Farkas’s lemma, linear inequalities 63—64 67—68
Farkas’s lemma, linear programming 142
| Farkas’s lemma, linear programming duality 220
Feasible sets, optimization problems 129
Feasible sets, simplex method, auxiliary problem 251—255
Feasible sets, simplex method, extreme points 225—229
Finite-intersection property 15
First-order conditions, differentiable nonlinear programming 145—163
Forward transformation, revised simplex method 258—260
Frechet differentiable 24
Free variables, simplex method 230
Fritz — John theorem, differentiable nonlinear programming 146—163
Fritz — John theorem, differentiable nonlinear programming, second-order conditions 172—174
Fundamental existence theorem 18—20
Gale’s theorem, linear inequalities 68
Game theory 117—127
Game theory, optimal mixed strategies 126—127
Game theory, optimal pure strategies 125—126
Gauge Functions 101
Gauss elimination 232—234
Gauss — Jordan elimination 233—234
Geometric interpretation, convex programming duality 207—210
Gordan’s theorem, generalization to convex functions 215
Gordan’s theorem, linear inequalities 65—67
Gordan’s theorem, quadratic programming 211—215
Half spaces 35—36
Half spaces, intersection theorems 55—56
Half-open line segments 31
Hessian matrix, differentiable convex functions 110—113
Hessian matrix, differentiable unconstrained problems 131—132
Hyperplanes, convex functions, subgradients 102—106
Hyperplanes, convex programming duality, geometric interpretation 208—210
Hyperplanes, convex set properties 35—36
Hyperplanes, convex set properties, Farkas’s lemma 65
Hyperplanes, definition 33—34
Hyperplanes, supporting hyperplanes 56—59 61 85
Implicit function theorem 163—164
Infimum 12—14
Inner product 2
Interior points, continuity of convex functions 96—98
Interior points, convex sets, n-dimensional 76
Interior points, convex sets, relative interior points 80—86
Jacobian matrix 25 165
Jensen’s inequality, convex functions 90—91
Karush — Kuhn — Tucker theorem, differentiable nonlinear programming 155—163
Karush — Kuhn — Tucker theorem, differentiable nonlinear programming, constraint qualifications 154—163
Karush — Kuhn — Tucker theorem, differentiable nonlinear programming, second-order conditions 168—172
Karush — Kuhn — Tucker theorem, differentiable nonlinear programming, sufficient conditions 159—160
Krein — Milman theorem 60
Kuhn — Tucker vectors as multipliers 184—185
Kuhn — Tucker vectors as subgradients of value function 194—196
Kuhn — Tucker vectors, definition 184
Kuhn — Tucker vectors, examples 197—200
Lagrange multipliers, convex programming as Kuhn—Tucker vectors 184—815
Lagrange multipliers, convex programming as subgradients of value function 194—196
Lagrange multipliers, convex programming, necessary conditions 181—184
Lagrange multipliers, convex programming, saddle point conditions 187—188
Lagrange multipliers, convex programming, sufficient conditions 186—187
Lagrange multipliers, differentiable nonlinear programming, first-order conditions 146—163
Lagrangian duality, convex programming 200—207
Lagrangian duality, convex programming, quadratic programming 211—215
Leaving variables, revised simplex method 256—260
Leaving variables, simplex method 239—245
Left-hand limit, real numbers 14
Limit points, continuity 9—11
Limit points, metric toplogy 6
Limits 9—11
Line segments 31
Linear functionals, Euclidean n-space 21—24
Linear functionals, hyperplane definition 33—34
Linear inequalities, convex sets, Farkas’s lemma 63—65 67
Linear inequalities, convex sets, Gale’s theorem 68
Linear inequalities, convex sets, Gordan’s theorem 65—67
Linear inequalities, convex sets, Motzkin’s theorem 66—67
Linear inequalities, convex sets, theorems of the alternative 61—68
Linear manifolds 69—71
Linear manifolds, dimension 70—71
Linear programming see also “Nonlinear programming”
Linear programming, canonical linear programming problem 144
Linear programming, complementary slackness condition 141—145
Linear programming, duality in 215—221
Linear programming, formulation 139—140
Linear programming, necessary and sufficient conditions 141—145
Linear programming, simplex method, auxiliary problem 251—255
Linear programming, simplex method, examples 222—225
Linear programming, simplex method, extreme points, feasible set 225—229
Linear programming, simplex method, phase I procedure 251—255
Linear programming, simplex method, phase II procedure 234—245
Linear programming, simplex method, preliminaries 230—234
Linear programming, simplex method, revised method 255—260
Linear programming, simplex method, termination and cycling 245—250
Linear programming, standard vs. canonical linear forms 144—145
Linear regression 134—135
Linear transformation as derivative 22—25
Linear transformation, Euclidean n-space 21
Lipschitz continuous functions 98
Local minimizers, convex functions 137
Local minimizers, differentiable nonlinear programming, differentiable unconstrained problems 129—136
Local minimizers, differentiable nonlinear programming, second-order sufficiency theorems 172—178
Logarithmic convexity 113
Lower bounds, real numbers 12—13
Matrix games 122—127
Maximization of convex functions 137—139
Mean-square approximation by orthogonal functions 135
Metric toplogy, Euclidean n-space 5—8
Minimizers, convex function optimization 137—139
Minimizers, convex programming, necessary and sufficient conditions 183—188
Minimizers, convex programming, quadratic programming 213—215
Minimizers, differentiable nonlinear programming 145—163
Minimizers, fundamental existence theorem 19—20
Minimizers, linear programming 140—145
Minkowski distance function 101
Mixed strategies 125—127
Morgan’s law 4—5
Motzkin’s theorem, linear inequalities 66—67
Multipliers see “Kuhn — Tucker vectors; Lagrange multipliers”
Necessary conditions, convex programming 181—188
Necessary conditions, differentiable nonlinear programming, first-order conditions 145—163
Necessary conditions, differentiable nonlinear programming, second-order conditions 163—178
Necessary conditions, linear programming duality 215—221
Necessary conditions, quadratic programming 211—215
Negative half space, convex set properties 35—36
Nonbasic variables, simplex method 230
Nonlinear programming, differentiable problems, first-order conditions 145—163
Nonlinear programming, differentiable problems, second-order conditions 163—178
Nontrivial supporting hyperplane 56—57 85
Null set 4—5
Open cover 14—15
Open line segment 31
Open sets, metric toplogy 6—8
Optimal solution, simplex method 231 238—245
Optimal strategies see “Game theory”
Orthogonality 4
Parallel hyperplanes 34
Parallel subspace 70
Payoff matrix 123—127
Perturbation theory 188—200
Pivot position, simplex method 244—245
Pivot position, simplex method, auxiliary problems 252—255
Positive definite matrix 111—112 135—136
Positive half space 35—36
Primal convex programming problem (CPII) 180—188
Primal convex programming problem (CPII), Lagrangian duality 200—207
Proper separation, convex sets 46
Quadratic programming 210—215
Quadratic programming, dual quadratic program (DQP) 214—215
Real numbers, boundedness properties 11—14
Relative boundaries, convex sets, support and separation theorems 81—86
Relative interior, convex sets, support and separation theorems 80—86
Revised simplex method 255—260
Right-hand limit 13—14
Saddle points, convex programming, Lagrangian duality 206—207
|
|
|
Ðåêëàìà |
|
|
|
|
|
|