Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Sornette D. — Critical phenomena in natural sciences | |
Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 28—33, 29, 37 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 117.G 234.E 246.K |
Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | xxiv, 27, 31—33, 54 |
Dorfman J.R. — Introduction to Chaos in Nonequilibrium Statistical Mechanics | 146, 147 |
Adler R.J. — An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes | 34 |
Blei R. — Analysis in Integer and Fractional Dimensions | 517, see also Dimension |
Gromov M. — Metric Structures for Riemannian and Non-Riemannian Spaces | 77 |
Chavel I. — Isoperimetric Inequalities : Differential Geometric and Analytic Perspectives | 105 |
Baker A. — Transcendental number theory | 95 |
Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 351 |
Grimmett G. — Percolation | 387 |
Lynch S. — Dynamical Systems with Applications Using Mathematica® | 345 |
Lorenz E.N. — Essence of Chaos | 168 |
Hale J.K., Magalhaes L.T., Oliva W. — Dynamics in Infinite Dimensions | 57 |
Pajot H.M. — Analytic Capacity, Rectifiability, Menger Curvature, and Cauchy Integral (Lecture Notes in Mathematics Series, Vol. 1799) | 4 |
Hensley D. — Continued Fractions | 36, 37, 100, 163—166, 174, 214, 215 |
Aikawa H., Essen M. — Potential Theory - Selected Topics | 145 |
Falconer K.J. — Techniques in Fractal Geometry | 21—23, 22 |
Gershenfeld N. — The Nature of Mathematical Modelling-Neil Gershenfeld | 215 |
Ott E. — Chaos in dynamical systems | 100—103, 313 |
Nagashima H., Baba Y. — Introduction to chaos: physics and mathematics of chaotic phenomena | 84 |
Finch S.R. — Mathematical constants | 154, 445, 538 |
Friedlander S. (Ed), Serre D. (Ed) — Handbook of Mathematical Fluid Dynamics, Vol. 4 | 162, 181 |
Mumford D., Wright D., Series C. — Indra's Pearls: The Vision of Felix Klein | 136, 139, 155, 256—259, 309, 313 |
Sandor J., Mitrinovic D.S., Crstici B. — Handbook of Number Theory II | 368 |
Ziemer W.P. — Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation | 1.4(18), Exercise 1.2(37) |
Chorin A.J. — Vorticity and turbulence | 59 |
Carleson L., Gamelin T.W. — Complex dynamics | 65, 139 |
Chaikin P.M., Lubensky T.C. — Principles of condensed matter physics | 97, 672 |
Garbaczewski P. (eds.), Olkiewicz R. (eds.) — Dynamics of dissipation | 197, 200 |
Makarov B.M. — Selected Problems in Real Analysis | 102 |
Ito K. — Encyclopedic Dictionary of Mathematics | 117.G, 234.E, 246.K |
Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 2, 9, 15, 137, 141, 153, 177, 179, 181, 201, 207, 213, 216, 229, 230, 276, 334, 388, 391 |
Hilborn R.C. — Chaos and nonlinear dynamics | 354, 383 |
Bogachev V.I. — Measure Theory Vol.2 | I: 216 |
Strichartz R.S. — The way of analysis | 653 |
Shanbhag D.N. (ed.), Rao C.R. (ed.) — Stochastic Processes - Modelling and Simulation | 101, 102, 374 |
Chan T., Shen J. — Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods | 44 |
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 3.8, 18.1, 19.6, 19.7, 19.9 |
Vuorinen M. — Conformal geometry and quasiregular mappings | 86 |
Baladi V. — Positive Transfer Operators And Decay Of Correlations | 109, 142 |
Mattheij R.M.M., Molenaar J. — Ordinary Differential Equations in Theory and Practice (Classics in Applied Mathematics) (No. 43) | 158 |
Lichtenberg A.J., Liebermen M.A. — Regular and Chaotic Dynamics | 551, 590, see also “Fractal dimension”, “Hausdorff” |
Babin A.V., Vishik M.I. — Attractors of Evolution Equations | 479 |
Billingsley P. — Probability and Measure | 19.11 |
Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 209 |
Ambjorn J., Durhuus B., Jonsson T. — Quantum Geometry: A Statistical Field Theory Approach | 42, 43, 61, 100, 139, 152, 222, 291 |
Barreira L. — Dimension and Recurrence in Hyperbolic Dynamics | 8 |
Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | see Part V |
Afraimovich V.S., Hsu S.-B. — Lectures on Chaotic Dynamical Systems | 64, 66 |
Wilkinson L., Wills G., Rope D. — The Grammar aof Graphics | 369 |
Chepyzhov V.V., Vishik M.I. — Attractors for equations of mathematical physics | 52 |
Drmota M., Tichy R.F. — Sequences, Discrepancies and Applications | 28, 211 |
Holden H., Oksendal B. — STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS | 3 |
Guckenheimer J., Holmes Ph. — Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Vol. 42 | 285—288 (Definitions 5.8.4), 333 |
Adler R.J. — Geometry of random fields | 187, 188—191, 203—215, 216 |
Devaney R.L., Keen L. — Chaos and Fractals: The Mathematics Behind the Computer Graphics | 109, 110 |
Itzykson C., Drouffe J-M. — Statistical field theory. Vol. 1 | 6, 802, 808 |
Adams D.R., Hedberg L.I. — Function spaces and potential theory | 133 |
Chaikin P., Lubensky T. — Principles of condensed matter physics | 97, 672 |
Carroll R.W. — Mathematical physics | 83 |
Rao M.M., Ren Z.D. — Applications of Orlicz spaces | 347 |
Kuttler K.L. — Modern Analysis | 384 |
Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 145 |
Ambjorn J., Durhuus B., Jonsson T. — Quantum Geometry. A Statistical Field Theory Approach | 42, 43, 61, 100, 139, 152, 222, 291 |
Antes H., Panagiotopoulos P.D. — The boundary integral approach to static and dynamic contact problem | 251 |
Greiner W. — Classical mechanics. Systems of particles and hamiltonian dynamics | 472 |
Fuchs M., Seregin G. — Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids | 98 |
Pier J.-P. — Mathematical Analysis during the 20th Century | 71 |
Courant R., Robbins H. — What Is Mathematics?: An Elementary Approach to Ideas and Methods | 499—501 |
Drmota M., Flajolet P., Gardy D. — Mathematics and computer science 3. Algorithms, trees, combinatorics and probabilities | 473 |
Dynkin E. — An Introduction to Branching Measure-Valued Processes | 4 |
Heinonen J. — Lectures on Analysis on Metric Spaces | 60, 62, 81, 92, 103, 107, 116 |
Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory | 113, 135 |
Addison P.S. — Fractals and chaos | 30 |
Falconer K. — Fractal geometry: mathematical foundations and applications | xxiv, 27, 31, 31—33, 31, 54 |
Badii R., Politi A. — Complexity: Hierarchical structures and scaling in physics | 117 |
Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | see "dimension, Hausdorff" |
Krushkal` S.L., Apanasov B.N. — Kleinian Groups and Uniformization in Examples and Problems (Translations of Mathematical Monographs) | 78, 123 |