|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Green function
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Sornette D. — Critical phenomena in natural sciences | | Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 323, 331, 340 | Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 150 | Oksendal B. — Stochastic differential equations : an introduction with applications | 163, 183, 191 | Hedenmalm H., Korenblum B., Zhu K. — Theory of Bergman spaces | 59 | Athreya K.B., Ney P.E. — Branching Processes | 66, 90—93, 98 | Mukamel S. — Principles of Nonlinear Optical Spectroscopy | 36, 67, 167, 172, 190, 280, 303, 358 | Pugovecki E. — Quantum mechanics in hilbert space | 470 | Davies E. — Spectral Theory and Differential Operators | 94 | Appell J.M., Kalitvin A.S., Zabrejko P.P. — Partial Integral Operators and Integro-Differential Equations | 7, 153, 155 | Kossevich A.M. — Crystal Lattice: Phonons, Solitons, Dislocations | 123 | Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 428, 623, 631, 633—637 | Palmer J. — Planar Ising Correlations | 151, 175, 178, 179, 236 | Hasumi M. — Hardy Classes on Infinitely Connected Riemann Surfaces | I.6A | Robert A. — Non-Standard Analysis | 10.1.1 | Aikawa H., Essen M. — Potential Theory - Selected Topics | 158, 176, 185 | Krantz S.G. — Function Theory of Several Complex Variables | 42, 43 | Ott E. — Chaos in dynamical systems | 344 | Oksendal B. — Stochastic Differential Equations: An Introduction With Applications | 172, 194, 196 | Lang S. — Diophantine Geometry | 164, 165, 209 | Aitchison I.J.R., Hey A.J.G. — Gauge theories in particle physics. Volume 1: from relativistic quantum mechanics to QED | 35, 158, 172, 179, 190, 366—371, 374 | Karlin S., Taylor H.E. — A Second Course in Stochastic Processes | 198—202, 287 | Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 112 | Agoshkov V.I., Dubovsky P.B. — Methods for Solving Mathematical Physics Problems | 76, 84 | Shiryaev A., Peskir G. — Optimal Stopping and Free-Boundary Problems | 81, 200 | Thouless D.J. — Topological quantum numbers in nonrelativistic physics | 70, 73, 76 | Chaikin P.M., Lubensky T.C. — Principles of condensed matter physics | 477—478 | Kadanoff L.P. — Statistical physics | 32, 33 | Wagner M. — Unitery Transformations in Solid State Physics | 131ff, 139, 141, 142 | Ziman J.M. — Elements of Advanced Quantum Theory | 94—134 (see also “Correlation function”, “Density matrix”, “Propagator”, “Resolvent”) | Altmann S.L. — Band Theory of Solids: An Introduction from the Point of View of Symmetry | 237 | Scott A. — Neuroscience: a mathematical primer | 193—194, 195, 221, 223 | Slade G. — The Lace Expansion and Its Applications | 3 | Green M.B., Schwarz J.H., Witten E. — Superstring Theory (vol. 2) | 16, 180 (see also “correlation function”) | Dittrich T. (ed.), Hanggi P. (ed.), Ingold G.-L. (ed,) — Quantum transport and dissipation | 15—20, 89, 90, 93, 99, 106, 306 | Mukamel S. — Principles of nonlinear spectroscopy | 36, 67, 167, 172, 190, 280, 303, 358 | Chipot M., Quittner P. — Stationary Partial Differential Equations, Vol. 1 | 579, 608 | Ioffe B.L., Khoze V.A., Lipatov L.N. — Hard processes (volume 1). Phenomenology Quark-Parton Model | 147, 150, 228, 245, 282 | Stahl H., Totik V. — General Orthogonal Polynomials | 1, 7, 15, 227, 230 | Muta T. — Foundations of Quantum Chromodynamics | 59, 62 | Kozlov V., Mazya V., Rossmann J. — Spectral problems associated with corner singularities of solutions to elliptic equations | 104, 194, 313, 358 | Haake F. — Quantum signatures of chaos | 58, 182, 232, 392, 416, 417, 441 | Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 305 | Zeldovich Ya.B., Yaglom I.M. — Higher Math for Beginners | 499, 515 | Malle G., Matzat B.H. — Inverse Galois Theory | 125 | Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 39—43, 74—91, 111, 180, 188, 194, 199, 202—211 | Stone M. — The physics of quantum fields | 29, 51 | Govil N.K. (ed.), Mohapatra R.N. (ed.), Nashed Z. (ed.) — Approximation theory: in memory of A. K. Varma | 451 | Visser M. — Lorentzian wormholes. From Einstein to Hawking | 282, 284, 295 | Boboc N. — Order and Convexity in Potential Theory | 200 | Berinde V. — Iterative Approximation of Fixed Points | 26, 30 | Feller W. — Introduction to probability theory and its applications (Volume II) | 334, 476, 496 | Babin A.V., Vishik M.I. — Attractors of Evolution Equations | 3 20 | Deák P. — Computer Simulation of Materials at Atomic Level | 15, 16, 666 | Junker G. — Supersymmetric Methods in Quantum and Statistical Physics | 67 | Nakamura K., Harayama T. — Quantum chaos and quantum dots | 12, 43, 61 | Kleinert H., Schulte-Frohlinde — Critical Properties of (Phi)P4-Theories | 32 | Beaurepaire E., Bulou H., Scheurer F. — Magnetism: A Synchrotron Radiation Approach | 129 | ter Haar D. — Elements of Statistical Mechanics | 8, 4 | Nagaosa N. — Quantum field theory in strongly correlated electronic systems | 49 | Greiner W. — Classical electrodynamics | 48 | Shore S.N. — The Tapestry of Modern Astrophysics | 5 | Daniel C. Mattis — The theory of magnetism made simple: an introduction to physical concepts and to some useful mathematical methods | 215, 246, 387, 389, 412, 535-537, 539, 543, 544, 546 | Volovik G. — Artificial black holes | 216, 220, 229, 230, 234, 235, 239 | Estrada R., Kanwal R.P. — A distributional approach to asymptotics theory and applications | 317 | Siegel W. — Fields | VA-B | Conway J.B. — A Course in Functional Analysis | 52 | Basdevant J.-L., Dalibard J. — Quantum Mechanics | 374 | Grosche C., Steiner F. — Handbook of Feynman path integrals | 2, 20, 23, 30, 81, 86, 176, 179, 206, 218-220, 222, 224, 226, 227, 263, 266, 277, 306 | Auletta G. — Foundations and Interpretation of Quantum Mechanics | 63, 65 | Holden H., Oksendal B. — STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS | 4, 8, 143 | Thomas A.W., Weise W. — The structure of the nucleon | 165 | Astfalk G. — Applications on Advanced Architecture Computers | 28 | Kleinert H. — Gauge fields in condensed matter (part 4) | 1059 | Goldenfeld N. — Lectures on Phase Transitions and the Renormalization Group | 159, 289 | Barnett S.M., Radmore P.M. — Methods in Theoretical Quantum Optics | 180, 267—268 | Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 503 | Dym H., McKean H.P. — Fourier Series and Integrals | 58, 59, 60, 64, 67, 72, 80 | Lindsay R.B. — Mechanical Radiation | 63 | Itzykson C., Drouffe J-M. — Statistical field theory. Vol. 1 | 8 | Haar D. — Selected problems in quantum mechanics | 3.10, 3.14—3.16, 3.45 | Achmanov S.A., Nikitin S.Yu. — Physical Optics | 109, 317, 358, 379 | Siegel W. — Fields | VA-B | Adams D.R., Hedberg L.I. — Function spaces and potential theory | 308, 312 | Chaikin P., Lubensky T. — Principles of condensed matter physics | 477—8 | Neuenschwander D. — Probabilities on the Heisenberg Group: Limit Theorems and Brownian Motion, Vol. 163 | 50, 72 | Avramidi I.G. — Heat Kernel and Quantum Gravity | 2, 3, 12—15, 17, 19, 47, 49, 51, 53, 55, 59, 60, 70, 71, 73, 96, 97, 99 | Silverman J. — The arithmetic of dynamical systems | 287, 288 | Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume XXXVI | 207, 213, 214, 216, 220, 254 | McGuire J.H. — Electron correlation dynamics in atomic collisions | 23, 60, 152, 193, 248 | Hooft G.T. — Under the spell of the gauge principle | 42 | Virchenko N. — Generalized Associated Legendre Functions and Their Applications | 98 | Motz H., Luchini P. — Undulators and free-electron lasers | 10, 98 | Maeda F.Y. — Dirichlet Integrals on Harmonic Spaces | 35 | Biedenharn L.C., Louck J.D. — Angular momentum in quantum physics | 434 | Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 147, 157, 164, 246, 251, 387, 392 | Dash J. — Quantitative Finance and Risk Management: A Physicist's Approach | 189, 274, 562, 570, 627, 631 | Ticciati R. — Quantum field theory for mathematicians | 271 | Kozlov V., Mazya V., Rossmann J. — Elliptic boundary value problems in domains with point singularities | 90, 136, 328 | Rektorys K. — Survey of Applicable Mathematics.Volume 2. | II 93, II 182 | Sakai M. — Quadrature Domains | 13, 64, 106 | Peszat S., Zabczyk J. — Stochastic partial differential equations with Levy noise: An evolution equation approach | 17—19 | Akhmanov S.A., Nikitin S.Yu. — Physical Optics | 109, 317, 358, 379 | ter Haar D. — Elements of Statistical Mechanics | §8.4 | Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 58, 59, 60, 64, 67, 72, 80 | Kleinert H. — Gauge fields in condensed matter (part 2) | 34, 140, 144, 147, 155, 160, 164, 168, 178, 184, 185, 192, 199, 213, 222, 233, see also "Lattice Green function" | Bangerth W., Rannacher R. — Adaptive Finite Element Methods for Differential Equations | 28, 31, 39, 61, 66 | Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 503 | Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 305 | Pastur L., Figotin A. — Spectra of Random and Almost-Periodic Operators | 169, 290, 293 | Jost J. — Bosonic Strings: A mathematical treatment | 71 | H. Fehske, R. Schneider, A. Weile — Computational Many-Particle Physics | 148, 478, 485, 552, 554, 562, 568 |
|
|