|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Spontaneous symmetry breaking
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Greiner W., Muller B., Rafelski J. — Quantum electrodynamics of strong fields | 20, 223 | Zinn-Justin J. — Quantum field theory and critical phenomena | 278, 305, 854 | Zinn-Justin J. — Quantum field theory and critical phenomena | 262, 292, 817 | Ward R.S., Wells R.O. — Twistor geometry and field theory | 281 | Vilenkin A., Shellard E.P.S. — Cosmic strings and other topological defects | 1—4, 23—37. See also electroweak symmetry breaking | Huang K. — Statistical Mechanics | 300, 348, 406 | Ryder L.H. — Quantum Field Theory | 282ff | Masujima M. — Path integral quantization and stochastic quantization | 150 | Fradkin E. — Field theories of condensed matter systems | 282 | Naber G.L. — Topology, Geometry and Gauge Fields | 133 | Zagoskin A.M. — Quantum theory of many-body systems | 156, 157 | Domb C., Green M.S. (eds.) — Phase Transitions and Critical Phenomena (Vol. 1) | 138, 151, 152 | Dagotto E., Alvarez G., Cooper S.L. — Nanoscale phase separation and colossal magnetoresistance | 91 | Brown L.S. — Quantum Field Theory | 98, 105, 325, 340 | Hughes I.S. — Elementary Particles | 253—255 | Bleecker D. — Gauge Theory and Variational Principles | 154— 160 | van Baal P. (ed.) — Confinement, duality, and non-perturbative aspects of QCD | 233, 242, 265, 417, 429, 515 | Bailin D., Love A. — Introduction to Gauge Field Theory | 169—192 | Greiner W., Muller B. — Gauge theory of weak interactions | 114ff, 121, 154ff | Held A. (ed.) — General relativity and gravitation. 100 years after the birth of Albert Einstein (volume 1) | 297 | Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 278 | Adair R.K. — The Great Design: Particles, Fields, and Creation | 335—337 | Held A. (ed.) — General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, Vol. 2 | 297 | O'Raifeartaigh L. — Group Structure of Gauge Theories | Chapters 8, 10, 12 | Stone M. — The physics of quantum fields | 10 | Visser M. — Lorentzian wormholes. From Einstein to Hawking | 59 | Strocchi F. — Symmetry Breaking | 9 | Rivers R.J. — Path Integral Methods in Quantum Field Theory | 220, 235, 255 | Collins P.D., Squires E.J., Martin A.D. — Particle Physics and Cosmology | 70 | Huang K. — Introduction to Statistical Physics | 188, 191 | Perkins D.H. — Particle Astrophysics | 80 | Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 70 | Hoddeson L., Daitch V. — True Genius: The Life and Science of John Bardeen | 3, 198, 217 | Zee A. — Quantum field theory in a nutshell | 193—194, 195, 197 | Halzen F., Martin A.D. — Quarks and Leptons: An Introductory Course in Modern Particle Physics | 25, 321 | Bardin D., Passarino G. — The Standard Model in the Making: Precision Study of the Electroweak Interactions | 109 | Manton N., Sutcliffe P. — Topological solitons | 31 | Christensen S.M. — Quantum theory of gravity | 369 | Thomas A.W., Weise W. — The structure of the nucleon | 2, 94, 147, 155, 157 | Goldenfeld N. — Lectures on Phase Transitions and the Renormalization Group | 25, 51, 58 | Weinberg S. — The Quantum Theory of Fields. Vol. 2 Modern Applications | 63 | Shu F.H. — The Physical Universe: An Introduction to Astronomy | 99, 406, 412 | Gallavotti G. — Foundations of fluid mechanics | 251, 261, 425 | Povh B., Rith K., Scholz C., Zetsche F. — Particles and nuclei. An introduction to the Physical Concepts | 158, 159 | Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 252 | Itzykson C., Drouffe J-M. — Statistical field theory. Vol. 1 | 112 | Ross G. — Grand Unified Theories | 2, 59, 61, 177, 192 | Konopleva N.P., Popov V.N. — Gauge Fields | 44—45, 80—81, 232 | Carroll R.W. — Mathematical physics | 81 | Marder M.P. — Condensed matter physics | 684 | Leader E., Predazzi E. — An introduction to gauge theories and modern particle physics | 1.40 | Naber G.L. — Topology, Geometry and Gauge Fields | 133 | HarrisR. — Nonclassical physics: beyond Newton's view | 525 | Ticciati R. — Quantum field theory for mathematicians | 53, 69, 398 | Brown L., Dresden M., Hoddeson L. — Pions to quarks: Particle physics in the 1950s | 29, 31, 376—377, 388, 490, 529, 639—642, 663, 686, 698—700, 703, 708—709 | Kardar M. — Statistical physics of fields | 29, 131 | Kashiwa T., Ohnuki Y., Suzuki M. — Path Integral Methods | 149 | Suter D. — The physics of laser-atom interactions | 355 | Close F. — The New Cosmic Onion: Quarks and the Nature of the Universe | 183 | Davies P. — The New Physics | 39, 41—43, 435 | Kane G.L. — Modern elementary particle physics | 97, 100, 243 | Meyer-Ortmanns H., Reisz T. — Principles of phase structures in particle physics | 21, 126 | Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 70 | Blin-Stoyle R.J. — Eureka! Physics of particles, matter and the universe | 163—164 | Stamatescu I., Seiler E. — Approaches to Fundamental Physics | 72, 76, 77, 402, 404, 413 | D.H. Perkins — Introduction to high energy physics | 268 | D.H. Perkins — Introduction to high energy physics | 268 |
|
|