|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Euler — Lagrange equation
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Agarwal R.P. — Difference Equations and Inequalities. Theory, Methods and Applications. | 783, 784 | Evans L.C. — Partial Differential Equations | 434, 450 | Acheson David — From calculus to chaos | 111 | Olver P.J. — Equivalence, Invariants and Symmetry | 223, 242, 245, 285, 323, 337, 340 | Cox D., Katz S. — Mirror symmetry and algebraic geometry | 412—414, 418, 421, 422, 424 | Kevorkian J., Cole J.D. — Multiple Scale and Singular Perturbation Methods | 74, 80, 81 | Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 101 | Nayfeh A.H. — Perturbation Methods | 216, 217, 218, 220, 222 | Goldstein H., Poole C., Safko J. — Classical mechanics | 45, 64, 65, 319, 354 | Debnath L. — Nonlinear water waves | 196—198, 317 | Bryant R., Griffiths P., Grossman D. — Exterior differential systems and Euler-Lagrange PDEs | vii, viii, 7, 10, 72, 99, 151, 156 | Debnath L. — Nonlinear Partial Differential Equations for Scientists and Engineers | 100—102, 104, 109, 276 | Safran S.A. — Statistical thermodynamics on surfaces, interfaces and membranes | 81, 87, 117, 170, 171 | Murnaghan F.D. — The calculus of variations | 10, 65, 73, 82, 83 | Carmona R. — Practical Time-Frequency Analysis | 283 | Chipot M., Quittner P. — Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. 3 | 556 | Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 767 | Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 9, 629, 633, 634, 646 | Dacorogna B. — Direct Methods in the Calculus of Variations | 3, 111, 117, 119, 126—131, 137, 138, 141—144, 146—148, 155, 159, 178, 191 | Jahn J. — Introduction to the Theory of Nonlinear Optimization | 48 | Roman P. — Introduction to quantum field theory | 20 | Hertrich-Jeromin U. — Introduction to Mobius Differential Geometry | 129 | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory | 278 | Pytlak R. — Numerical Methods for Optimal Control Problems with State Constraints | 2, 3 | Newman J.R. — The World of Mathematics, Volume 2 | 889 | Besse A.L. — Einstein Manifolds | 122 | Chaikin P.M., Lubensky T.C. — Principles of condensed matter physics | 301—302, 485, 538, 597, 671 | Gompper G., Schick M. — Self-Assembling Amphiphilic Systems | 81, 87, 98 | Kohno T. — Conformal Field Theory and Topology | 1 | McDuff D., Salamon D. — Introduction to Symplectic Topology | 12, 13, 15, 16, 277, 285, 287 | Jahne B. — Digital Image Processing | 445, 455 | Carmo M.P. — Differential geometry of curves and surfaces | 365 | Pedregal P. — Introduction to Optimization | 141 | Maimistov A.I., Basharov A.M. — Nonlinear optical waves | 244, 305, 394, 395, 405 | Poisson E. — A relativists toolkit | 6, 7, 120, 121, 128 | Stakgold I. — Green's Functions and Boundary Value Problems | 524 | Newman J.R. (ed.) — The World of Mathematics, Volume 4 | 889 | Chan T., Shen J. — Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods | 178, 224, 284, 293 | Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 1, 68, 117—118 | Griffits D. — Introduction to elementary particles | 344—345 | Sernelius B.E. — Surface Modes in Physics | 248 | Perkins D.H. — Particle Astrophysics | 65 | Zee A. — Quantum field theory in a nutshell | 13, 74, 424, 434 | Shore S.N. — The Tapestry of Modern Astrophysics | 76 | Pfeiler W. — Alloy Physics: A Comprehensive Reference | 402 | Halzen F., Martin A.D. — Quarks and Leptons: An Introductory Course in Modern Particle Physics | 312 | van der Giesen E. (Editor), Wu T.Y. (Editor) — Solid Mechanics, Volume 36 | 21 | Straumann N. — General relativity and relativistic astrophysics | see “Variational principle” | Manton N., Sutcliffe P. — Topological solitons | 16, 25 | Fordy A.P., Wood J.C. (eds.) — Harmonic maps and integrable systems | 130 | Riley, Hobson — Mathematical Methods for Physics and Engineering | 835—836 | Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 171 | Agarwal R.P., O'Regan D., Grace S.R. — Oscillation Theory for Second Order Linear, Half-Linear | 94 | Dickey L.A. — Soliton Equations and Hamiltonian Systems | 30 | Atkins P. — Molecular Quantum Mechanics | 48 | Bornemann F. — Homogenization in Time of Singularly Perturbed Mechanical Systems (Lecture Notes in Mathematics, 1687) | 18, 51 | Hristev R.M. — The artificial neural network book | 176 | Chaikin P., Lubensky T. — Principles of condensed matter physics | 301—2, 485, 538, 597, 671 | Mielke A. — Hamiltonian and Lagrangian Flows on Center Manifolds: With Applications to Elliptic Variational Problems | 96 | Feher L. (ed.), Stipsicz A. (ed.), Szenthe J. (ed.) — Topological quantum field theories and geometry of loop spaces | 97 | Ram-Mohan R. — Finite Element and Boundary Element Applications in Quantum Mechanics | 13 | Stakgold I. — Green's functions and boundary value problems | 524 | Greiner W., Reinhardt J. — Field quantization | 5, 32, 33, 57, 118, 149, 152, 172 | Donoghue W.F. — Distributions and Fourier transforms | 97 | Saito Y. — Statistical physics of crystal growth | 11 | Lemons D.S. — Perfect form: Variational principles, methods, and applications in elementary physics | 22—23, 27—28 | Mathews J., Walker R.L. — Mathematical methods of physics | 324 | Anderssen R.S., de Hoog F.R., Lukas M.A. — The application and numerical solution of integral equations | 154, 165 | Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 485 | Francis D Murnaghan — The calculus of variations | 10, 65, 73, 82, 83 | Milonni P.W. — The quantum vacuum: introduction to quantum electrodynamics | 362 | Moriyasu K. — An Elementary Primer for Gauge Theory | 16 | Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 125 | Vafa C., Zaslow E. — Mirror symmetry | 170 | Bluman G.W. — Similarity Methods for Differential Equations | 117 | Greiner W. — Classical mechanics. Systems of particles and hamiltonian dynamics | 355 | Zeidler E. — Oxford User's Guide to Mathematics | 419, 431, 443, 477, 910 | Fuchs M., Seregin G. — Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids | 147 | Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 729—731, 734—736, 738, 739 | Wang D. (ed.), Zheng Z. (ed.) — Differential Equations with Symbolic Computations | 309, 313 | Lee A. — Mathematics Applied to Continuum Mechanics | see "Euler equation" | Groesen E., Molenaar J. — Continuum Modeling in the Physical Sciences (Monographs on Mathematical Modeling and Computation) | 149, 154 | Morii T., Lim C., Mukherjee S. — The physics of the standard model and beyond | 34 | Nahin P.J. — When Least Is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible | 145, 231—242, 248—250, 252—257, 260—262, 359—360, see also "Beltrami's identity" | Friedman A., Littman W. — Industrial Mathematics: A Course in Solving Real-World Problems | 93, 95 | Blanchard P., Bruening E. — Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Method | 376, 401 | Kleinert H. — Gauge fields in condensed matter (part 2) | 106, 108, 290 | Zorich V.A., Cooke R. — Mathematical analysis II | 91 | Cheney W. — Analysis for Applied Mathematics | 155 | Zorich V. — Mathematical Analysis | 91 | Stamatescu I., Seiler E. — Approaches to Fundamental Physics | 99 | Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 171 | Mathews J., Walker R.L. — Mathematical Methods of Physics | 324 | Prigogine I. (ed.) — Advances in Chemical Physics. Volume XIX | 346 | Miron R. — The Geometry of Higher-Order Lagrange Spaces: Applications to Mechanics and Physics (Fundamental Theories of Physics) | 146 | Jost J. — Bosonic Strings: A mathematical treatment | 4, 19, 21, 22, 24, 29 | Helander P., Sigmar D.J. — Collisional Transport in Magnetized Plasmas | 99 |
|
|