|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Self-similarity
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Cardy J. — Scaling and renormalization in statistical physics | | Sornette D. — Critical phenomena in natural sciences | | Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | xxii | Fisher Y. — Fractal Image Compression. Theory and Application | 9, 10, 17, 18, 26, 69, 70, 76, 91, 136, 142, 199, 229, 249, 301, 308 | Becker K.H., Dörfler M. — Dynamical Systems and Fractals : Computer Graphics Experiments with Pascal | 42, 61, 103 | Milnor J. — Dynamics in One Complex Variable | 3-2, 3-9 | Korsch H.J., Jodl H.-J. — Chaos: A Program Collection for the PC | 20, 24, 118, 194, 221, 305 | Connes A. — Noncommutative geometry | V.9 | Rettig W. (ed.), Strehmel B., Schrader S. — Applied Fluorescence in Chemistry, Biology and Medicine | 331, 333 | Cameron P.J. — Combinatorics : Topics, Techniques, Algorithms | 27 | Chanson S.T. (ed.), Tang X. (ed.), Xu J. (ed.) — Web Content Delivery | 185 | Benson D. — Mathematics and music | 39 | Goldstein H., Poole C., Safko J. — Classical mechanics | 505, 514 | Kaandorp J.A. — Fractal Modelling: Growth and Form in Biology | 10, 103 | Johnson K.L. — Contact mechanics | 119, 121, 161 | Frisch U. — Turbulence. The legacy of A.N. Kolmogorov | 75, 121, 125, see intermittency | Biscamp D. — Magnetohydrodynamic turbulence | 133 | Brin M., Stuck G. — Introdution to dynamical system | 202 | Stauffer D., Aharony A. — Introduction To Percolation Theory | 82 | Hand L.N., Finch J.D. — Analytical Mechanics | 487—488 | Thorisson H. — Coupling, Stationarity, and Regeneration | 242 | Resnick S.I. — Heavy-Tail Phenomena: Probabilistic and Statistical Modeling | 124, 154 | Carmona R. — Practical Time-Frequency Analysis | 268 | Lorenz E.N. — Essence of Chaos | 170—171 | Smith L.A. — Chaos: A Very Short Introduction | 76—77, 78 | Smith P. — Explaining chaos | 22 | Gleick J. — Chaos. Making a new science | 103, 115—116, 227 | Pickover C.A. — Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning | 36, 120, 131—132, 168, 219, 334, 365 | Friedlander S.J. (Ed), Serre D. (Ed) — Handbook of Mathematical Fluid Dynamics, Vol. 3 | 234 | Stauffer D., Aharony A. — Introduction to percolation theory | 82 | Domb C., Lebowitz J.L. — Phase Transitions and Critical Phenomena (Vol. 19) | 3 | Katayama T., Sugimoto S. — Statistical Methods in Control and Signal Processing | 499 | Dittrich T. (ed.), Hanggi P. (ed.), Ingold G.-L. (ed,) — Quantum transport and dissipation | 290, 292, 293, 324, 333, 334, 341, 346, 348, 349 | Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 31, 39, 47, 59, 122, 153, 190, 211, 237, 255, 260, 272, 276, 278, 307, 310, 330, 333, 346, 356, 357, 363, 367, 383, 385, 389 | Hilborn R.C. — Chaos and nonlinear dynamics | 56—57, 347 | Yulsman T. — Origins. The quest for our cosmic roots | 112, 251—252 | Barber J.R. — Elasticity | 157, 185, 294, 295 | Bingham N.H., Goldie C.M., Teugels J.L. — Regular variation | 354—359 | Billingham J., King A.C. — Wave Motion | 231 | Aoki K. — Nonlinear dynamics and chaos in semiconductors | 272 | Landau L.D., Lifschitz E.M. — Fluid Mechanics. Vol. 6 | 133n., 150 | Bardou F., Bouchaud J., Aspect A. — Levy statistics and laser cooling | see “Momentum distribution” | Callaghan P. — Principles of Nuclear Magnetic Resonance Microscopy | 404 | Kenzel W., Reents G., Clajus M. — Physics by Computer | 104 | Pope S.B. — Turbulent Flows | 99 | Lomnitz C. — Fundamentals of earthquake prediction | 166 | Beardon A.F., Axler S. (Ed) — Iteration of Rational Functions | 250 | Young R.M. — Excursions in Calculus: An Interplay of the Continuous and the Discrete | 175 | Holmes P., Lumley J.L., Berkooz G. — Turbulence, Coherent Structures, Dynamical Systems and Symmetry | 50—51, 351 | Bernard P.S., Wallace J.M. — Turbulent Flow: Analysis, Measurement and Prediction | (see Similarity, self) | Wilkinson L., Wills G., Rope D. — The Grammar aof Graphics | 373 | Tsang L., Kong J.A., Ding K.- H. — Scattering of electromagnetic waves (Vol 2. Numerical simulations) | 644 | Hughes B.D. — Random walks and random enviroments (Vol. 1. Random walks) | 11 | Beardon A.F. — Iteration of rational functions | 250 | Theodoridis S., Koutroumbas K. — Pattern recognition | 303 | Roads Ñ.(ed.) — Musical signal processing | 188, 190—194 | Roepstorf G. — Path integral approach to quantum physics | 24 | Zallen R. — The Physics of Amorphous Solids | 115, 131, 132 | Saito Y. — Statistical physics of crystal growth | 83 | Coffey W.T., Kalmykov Yu.P., Waldron J.T. — The Langevin equation | 5, 608, 671 | Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology, | 270 | Davies P. — The Cosmic Blueprint | 43, 58—62, see also "Fractals" | Biskamp D. — Magnetohydrodynamic Turbulence | 133 | Moore F. — Elements of Computer Music | 442 | Greiner W. — Classical mechanics. Systems of particles and hamiltonian dynamics | 468, 484, 485, 494 | Chandler D. — Introduction to modern statistical mechanics | 158 | Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 775 | Kardar M. — Statistical physics of fields | 59, 164, 196 | Mantegna R.N., Stanley H.E. — An introduction to econophysics: correlations and complexity in finance | 26, 62, 68, 71 | Bäck T. — Evolutionary Algorithms in Theory and Practice | 144 | Steele J.M. — Probability Theory and Combinatorial Optimization | 44 | Falconer K. — Fractal geometry: mathematical foundations and applications | xxii | Stamatescu I., Seiler E. — Approaches to Fundamental Physics | 277 | Badii R., Politi A. — Complexity: Hierarchical structures and scaling in physics | 17, 23, 117, 270, 271 | Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years | 160—161 | Landau L., Sykes J. — Fluid Mechanics: Vol 6 (Course of Theoretical Physics) | 133n, 150 | Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | xxix, xxxv, 9, 48 |
|
|