| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Weintraub S. — Differential Forms. A complement to vector calculus | |
| Bartle R.G. — The Elements of Real Analysis | 225 |
| Hunter J.K., Nachtergaele B. — Applied Analysis | 389 |
| Rudin W. — Principles of Mathematical Analysis | 218 |
| Apostol T.M. — Calculus (vol 2) | 254 |
| Keisler H.J. — Elementary calculus | 786 |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 106.G |
| Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | 595, 600, 673 |
| Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 32 |
| Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 32 |
| Apostol T.M. — Mathematical Analysis | 344 |
| Mauch S. — Introduction to Methods of Applied Mathematics or Advanced Mathematical Methods for Scientists and Engineers | 95 |
| Olver P.J. — Equivalence, Invariants and Symmetry | 253 |
| Oprea J. — Differential Geometry and Its Applications | 69 |
| Bonet J., Wood R.D. — Nonlinear Continuum Mechanics for Finite Element Analysis | 13, 14—17, 43—51 |
| Goldman R., Krasauskas R. — Topics in algebraic geometry and geometric modeling | 40, 46 |
| Goldberg S.I. — Curvature and homology | 6 |
| Jacobson N. — Structure and Representations of Jordan Algebras | 214, 216 |
| Lee J.M. — Introduction to Smooth Manifolds | 43 |
| Webster R. — Convexity | 225 |
| Millman R.S., Parker G.D. — Elements of Differential Geometry | 124 |
| Isham J. — Modern Differential Geometry for Physics | 75 |
| Showalter R.E. — Monotone Operators in Banach Space and Nonlinear Partial Differential Equations | 80, 220 |
| Widder D.V. — Advanced calculus | 30, 66 |
| Lavendhomme R. — Basic Concepts of Synthetic Differential Geometry | 11 |
| Ward R.S., Wells R.O. — Twistor geometry and field theory | 12, 13, 18, 73, 74 |
| Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions | 155 |
| Fletcher R. — Practical methods of optimization. Volume 2: constrained optimization | 181, 184, 208 |
| Kriegl A., Michor P.W. — The Convenient Setting of Global Analysis | 128 |
| Wilmott P., Bowison S., DeWynne J. — Option Pricing: Mathematical Models and Computation | 77 |
| Hand L.N., Finch J.D. — Analytical Mechanics | 236 |
| Kock A. — Synthetic Differential Geometry | 50 |
| Auslender A., Teboulle M. — Asymptotic Cones and Functions in Optimization and Variational Inequalities | 15 |
| Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 318 |
| Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 267, 268 |
| Jahn J. — Introduction to the Theory of Nonlinear Optimization | 31, 54 |
| Zalinescu C. — Convex Analysis in General Vector Spaces | 56 |
| Strauss W.A. — Partial Differential Equations: An Introduction | 6, 8, 20, 387 |
| Cooper J. — A Matlab Companion for Multivariable Calculus | 81 |
| Petersen P. — Riemannian Geometry | 22 |
| Mishura Y.S. — Stochastic Calculus for Fractional Brownian Motion and Related Processes | 145 |
| Weatherburn C. — Advanced Vector Analysis | 2, 3, 4, 6 |
| Phelps R.R. — Convex Functions, Monotone Operators and Differentiability | 2 |
| Neittaanmaki P., Tiba D. — Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications | 38 |
| Pugh C.C. — Real Mathematical Analysis | 348 |
| Lange K. — Optimization | 50 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 47 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 47 |
| Khuri A.I. — Advanced calculus with applications in statistics | 273 |
| Ayres F.J., Mendelson E. — Schaum's Outline of Calculus | 417 |
| Lang S.A. — Undergraduate Analysis | 383 |
| Planck M. — Introduction to Theoretical Physics | 54 |
| Nesterov Y. — Introductory Lectures on Convex Optimization: A Basic Course | 122 |
| Dorlas T.C. — Statistical mechanics, fundamentals and model solutions | 37 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 106.G |
| Kiwiel K.C. — Methods of Descent for Nondifferentiable Optimization | 4 |
| Morita S. — Geometry of differential forms | 8 |
| Sokolnikoff I.S. — Higher Mathematics for Engineers and Physicists | 143, 151, 219; see also “Gradient” |
| Jahne B. — Digital Image Processing | 358 |
| Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 243, 253, 369 (see also “Gradient”) |
| Giorgi G., Thierfelder J. — Mathematics of Optimization: Smooth and Nonsmooth Case | 94, 360 |
| Morita Sh. — Geometry of Differential Forms | 8 |
| Greenberg M.D. — Advanced engineering mathematics | 767 |
| Bonnans F.J., Gilbert C.J., Lemarechal C. — Numerical Optimization | 95, 158 |
| O'Neill B. — Elementary differential geometry | 11—15, 149 |
| Intriligator M.D., Arrow K.J. — Handbook of Mathematical Economics (vol. 1) | 104 |
| Strichartz R.S. — The way of analysis | 423 |
| Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 170 |
| Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 100, 135, 210, 211, 226 |
| Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 161, 288 |
| Munkres J.R. — Analysis on manifolds | 42 |
| Ludvigsen M. — General relativity. A geometric approach | 61 |
| Murota K. — Discrete convex analysis | 80 |
| Betts J.T. — Practical Methods for Optimal Control Using Nonlinear Programming | 9 |
| Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems | 5 |
| Shirer H.N. — Nonlinear Hydrodynamic Modeling: A Mathematical Introduction | 489, 492 |
| Axellson O., Barker V.A. — Finite Element Solution of Boundary Value Problems. Theory and Computation | 5, 66 |
| Kreyszig E. — Advanced engineering mathematics | 404 |
| Neff H.P.Jr. — Introductory electromagnetics | 18 |
| Oprea J. — Differential Geometry and Its Applications | 81 |
| McQuistan R.B. — Scalar and Vector Fields: a Physical Interpretation | 139, 191 |
| Tuy H. — Convex analysis and global optimization | 65 |
| Margenau H., Murphy G.M. — The mathematics of physics and chemistry | 150, 174 |
| Farin G. — Curves and surfaces for computer aided geometric design | 75, 285 |
| Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 186, 392, 555, 571, 602 |
| Bazaraa M.S., Sherali H.D., Shetty C.M. — Nonlinear Programming: Theory and Algorithms | 102 |
| Moerdijk I., Reyes G.E. — Models for smooth infinitesimal analysis | 200 |
| Efimov A.V. — Mathematical analysis: advanced topics. Part 2. Application of some methods of mathematical and functional analysis | 21 |
| Jähne B. — Spatio-Temporal Image Processing | 148 |
| Bjoerck A., Dahlquist G. — Numerical mathematics and scientific computation | 444 |
| Kaplan W. — Introduction to analytic functions | 23, 39—40 |
| Morita S. — Geometry of Differential Forms | 8 |
| Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology | 8, 12, 13, 250 |
| Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 611 |
| Wriggers P. — Computational Contact Mechanics | 38 |
| Israel W. (ed.) — Relativity, astrophysics and cosmology | 310-311 |
| Morse P.M. — Methods of theoretical physics | 32 |
| Carroll R.W. — Mathematical physics | 29 |
| Lang S. — Undergraduate analysis | 383 |
| Hsiung C.-C. — A first course in differential geometry | 33, 173 |
| Loomis L.H., Sternberg S. — Advanced calculus | 147 |
| Lane S.M. — Mathematics, form and function | 169, 193, 248 |
| Blaszak M. — Multi-Hamiltonian Theory of Dynamical Systems | 23, 27 |
| Barbu V. — Analysis and control of nonlinear infinite dimensional systems | 31, 59 |
| Friedman R., Morgan J.W. — Smooth four-manifolds and complex surfaces | 420 |
| Hildebrand F.B. — Advanced Calculus for Applications | 276 |
| Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 123 |
| Robinson S.M. — Convexity and Monotonicity in Finite-Dimensional Spaces | 134 |
| Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 254 |
| Israel W. (ed.) — Relativity, astrophysics and cosmology | 310—311 |
| Zeidler E. — Oxford User's Guide to Mathematics | 292 |
| Arnold V.I. — Ordinary Differential Equations | 73 |
| Israel W. — Relativity, Astrophysics and Cosmology | 310—311 |
| Yamamuro S. — Differential Calculus in Topological Linear Spaces | 1.1 |
| Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 33 |
| Franklin P. — Differential and integral calculus | 536 |
| Slater J., Frank N. — Introduction to Theoretical Physics | 54 |
| Burden R.L., Faires J.D. — Numerical analysis | 569 |
| Magaril-Il'yaev G.G., Tikhomirov V.M. — Convex Analysis: Theory and Applications | 36 |
| Groesen E., Molenaar J. — Continuum Modeling in the Physical Sciences (Monographs on Mathematical Modeling and Computation) | 88 |
| Schutz B. — Geometrical Methods in Mathematical Physics | 33, 53 |
| Cheney W. — Analysis for Applied Mathematics | 227 |
| Mac Lane S. — Mathematics: Form and Function | 169, 193, 248 |
| Bhatia R. — Matrix Analysis | 310 |
| Apostol T. — Mathematical Analysis, Second Edition | 344 |
| Isham C. — Modern Differential Geometry for Physicists | 75 |
| Giorgi G., Guerraggio A., Thierfelder J. — Mathematics of optimization | 94, 360 |
| J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 117 |