Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Weintraub S. — Differential Forms. A complement to vector calculus | |
Bartle R.G. — The Elements of Real Analysis | 225 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 389 |
Rudin W. — Principles of Mathematical Analysis | 218 |
Apostol T.M. — Calculus (vol 2) | 254 |
Keisler H.J. — Elementary calculus | 786 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 106.G |
Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | 595, 600, 673 |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 32 |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 32 |
Apostol T.M. — Mathematical Analysis | 344 |
Mauch S. — Introduction to Methods of Applied Mathematics or Advanced Mathematical Methods for Scientists and Engineers | 95 |
Olver P.J. — Equivalence, Invariants and Symmetry | 253 |
Oprea J. — Differential Geometry and Its Applications | 69 |
Bonet J., Wood R.D. — Nonlinear Continuum Mechanics for Finite Element Analysis | 13, 14—17, 43—51 |
Goldman R., Krasauskas R. — Topics in algebraic geometry and geometric modeling | 40, 46 |
Goldberg S.I. — Curvature and homology | 6 |
Jacobson N. — Structure and Representations of Jordan Algebras | 214, 216 |
Lee J.M. — Introduction to Smooth Manifolds | 43 |
Webster R. — Convexity | 225 |
Millman R.S., Parker G.D. — Elements of Differential Geometry | 124 |
Isham J. — Modern Differential Geometry for Physics | 75 |
Showalter R.E. — Monotone Operators in Banach Space and Nonlinear Partial Differential Equations | 80, 220 |
Widder D.V. — Advanced calculus | 30, 66 |
Lavendhomme R. — Basic Concepts of Synthetic Differential Geometry | 11 |
Ward R.S., Wells R.O. — Twistor geometry and field theory | 12, 13, 18, 73, 74 |
Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions | 155 |
Fletcher R. — Practical methods of optimization. Volume 2: constrained optimization | 181, 184, 208 |
Kriegl A., Michor P.W. — The Convenient Setting of Global Analysis | 128 |
Wilmott P., Bowison S., DeWynne J. — Option Pricing: Mathematical Models and Computation | 77 |
Hand L.N., Finch J.D. — Analytical Mechanics | 236 |
Kock A. — Synthetic Differential Geometry | 50 |
Auslender A., Teboulle M. — Asymptotic Cones and Functions in Optimization and Variational Inequalities | 15 |
Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 318 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 267, 268 |
Jahn J. — Introduction to the Theory of Nonlinear Optimization | 31, 54 |
Zalinescu C. — Convex Analysis in General Vector Spaces | 56 |
Strauss W.A. — Partial Differential Equations: An Introduction | 6, 8, 20, 387 |
Cooper J. — A Matlab Companion for Multivariable Calculus | 81 |
Petersen P. — Riemannian Geometry | 22 |
Mishura Y.S. — Stochastic Calculus for Fractional Brownian Motion and Related Processes | 145 |
Weatherburn C. — Advanced Vector Analysis | 2, 3, 4, 6 |
Phelps R.R. — Convex Functions, Monotone Operators and Differentiability | 2 |
Neittaanmaki P., Tiba D. — Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications | 38 |
Pugh C.C. — Real Mathematical Analysis | 348 |
Lange K. — Optimization | 50 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 47 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 47 |
Khuri A.I. — Advanced calculus with applications in statistics | 273 |
Ayres F.J., Mendelson E. — Schaum's Outline of Calculus | 417 |
Lang S.A. — Undergraduate Analysis | 383 |
Planck M. — Introduction to Theoretical Physics | 54 |
Nesterov Y. — Introductory Lectures on Convex Optimization: A Basic Course | 122 |
Dorlas T.C. — Statistical mechanics, fundamentals and model solutions | 37 |
Ito K. — Encyclopedic Dictionary of Mathematics | 106.G |
Kiwiel K.C. — Methods of Descent for Nondifferentiable Optimization | 4 |
Morita S. — Geometry of differential forms | 8 |
Sokolnikoff I.S. — Higher Mathematics for Engineers and Physicists | 143, 151, 219; see also “Gradient” |
Jahne B. — Digital Image Processing | 358 |
Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 243, 253, 369 (see also “Gradient”) |
Giorgi G., Thierfelder J. — Mathematics of Optimization: Smooth and Nonsmooth Case | 94, 360 |
Morita Sh. — Geometry of Differential Forms | 8 |
Greenberg M.D. — Advanced engineering mathematics | 767 |
Bonnans F.J., Gilbert C.J., Lemarechal C. — Numerical Optimization | 95, 158 |
O'Neill B. — Elementary differential geometry | 11—15, 149 |
Intriligator M.D., Arrow K.J. — Handbook of Mathematical Economics (vol. 1) | 104 |
Strichartz R.S. — The way of analysis | 423 |
Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 170 |
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 100, 135, 210, 211, 226 |
Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 161, 288 |
Munkres J.R. — Analysis on manifolds | 42 |
Ludvigsen M. — General relativity. A geometric approach | 61 |
Murota K. — Discrete convex analysis | 80 |
Betts J.T. — Practical Methods for Optimal Control Using Nonlinear Programming | 9 |
Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems | 5 |
Shirer H.N. — Nonlinear Hydrodynamic Modeling: A Mathematical Introduction | 489, 492 |
Axellson O., Barker V.A. — Finite Element Solution of Boundary Value Problems. Theory and Computation | 5, 66 |
Kreyszig E. — Advanced engineering mathematics | 404 |
Neff H.P.Jr. — Introductory electromagnetics | 18 |
Oprea J. — Differential Geometry and Its Applications | 81 |
McQuistan R.B. — Scalar and Vector Fields: a Physical Interpretation | 139, 191 |
Tuy H. — Convex analysis and global optimization | 65 |
Margenau H., Murphy G.M. — The mathematics of physics and chemistry | 150, 174 |
Farin G. — Curves and surfaces for computer aided geometric design | 75, 285 |
Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 186, 392, 555, 571, 602 |
Bazaraa M.S., Sherali H.D., Shetty C.M. — Nonlinear Programming: Theory and Algorithms | 102 |
Moerdijk I., Reyes G.E. — Models for smooth infinitesimal analysis | 200 |
Efimov A.V. — Mathematical analysis: advanced topics. Part 2. Application of some methods of mathematical and functional analysis | 21 |
Jähne B. — Spatio-Temporal Image Processing | 148 |
Bjoerck A., Dahlquist G. — Numerical mathematics and scientific computation | 444 |
Kaplan W. — Introduction to analytic functions | 23, 39—40 |
Morita S. — Geometry of Differential Forms | 8 |
Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology | 8, 12, 13, 250 |
Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 611 |
Wriggers P. — Computational Contact Mechanics | 38 |
Israel W. (ed.) — Relativity, astrophysics and cosmology | 310-311 |
Morse P.M. — Methods of theoretical physics | 32 |
Carroll R.W. — Mathematical physics | 29 |
Lang S. — Undergraduate analysis | 383 |
Hsiung C.-C. — A first course in differential geometry | 33, 173 |
Loomis L.H., Sternberg S. — Advanced calculus | 147 |
Lane S.M. — Mathematics, form and function | 169, 193, 248 |
Blaszak M. — Multi-Hamiltonian Theory of Dynamical Systems | 23, 27 |
Barbu V. — Analysis and control of nonlinear infinite dimensional systems | 31, 59 |
Friedman R., Morgan J.W. — Smooth four-manifolds and complex surfaces | 420 |
Hildebrand F.B. — Advanced Calculus for Applications | 276 |
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 123 |
Robinson S.M. — Convexity and Monotonicity in Finite-Dimensional Spaces | 134 |
Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 254 |
Israel W. (ed.) — Relativity, astrophysics and cosmology | 310—311 |
Zeidler E. — Oxford User's Guide to Mathematics | 292 |
Arnold V.I. — Ordinary Differential Equations | 73 |
Israel W. — Relativity, Astrophysics and Cosmology | 310—311 |
Yamamuro S. — Differential Calculus in Topological Linear Spaces | 1.1 |
Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 33 |
Franklin P. — Differential and integral calculus | 536 |
Slater J., Frank N. — Introduction to Theoretical Physics | 54 |
Burden R.L., Faires J.D. — Numerical analysis | 569 |
Magaril-Il'yaev G.G., Tikhomirov V.M. — Convex Analysis: Theory and Applications | 36 |
Groesen E., Molenaar J. — Continuum Modeling in the Physical Sciences (Monographs on Mathematical Modeling and Computation) | 88 |
Schutz B. — Geometrical Methods in Mathematical Physics | 33, 53 |
Cheney W. — Analysis for Applied Mathematics | 227 |
Mac Lane S. — Mathematics: Form and Function | 169, 193, 248 |
Bhatia R. — Matrix Analysis | 310 |
Apostol T. — Mathematical Analysis, Second Edition | 344 |
Isham C. — Modern Differential Geometry for Physicists | 75 |
Giorgi G., Guerraggio A., Thierfelder J. — Mathematics of optimization | 94, 360 |
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 117 |