Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Guillemin V., Pollack A. — Differential topology | 103 |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 409 |
Bass H. — Algebraic K-theory | 21 |
Artin E. — Geometric Algebra | 92 |
Dummit D.S., Foote R.M. — Abstract algebra | 378 |
Wegge-Olsen N.E. — K-Theory and C*-Algebras: a friendly approach | 3.1.1 |
Bechtell H. — The theory of groups | 23 |
Hajime Sato — Algebraic Topology: An Intuitive Approach | 29 |
Pommaret J.F. — Differential Galois Theory | 1A 1.25 |
Matsumura H. — Commutative ring theory | 12, 45, 51, 53, 268 |
Schenck H. — Computational algebraic geometry | 27 |
Kodaira K. — Complex manifolds and deformation of complex structures | 123, 126 |
Eisenbud D. — Commutative algebra with a view toward algebraic geometry | 16, 611, 626 |
Miranda R. — Graduate studies in mathematics (vol.5). Algebraic curves and Riemann surfaces | 181 |
Pareigis B. — Categories and functors | 166 |
Lee J.M. — Introduction to Smooth Manifolds | 285 |
Isham J. — Modern Differential Geometry for Physics | 255 |
Takesaki M. — Theory of Operator Algebras III | 328 |
Takesaki M. — Theory of Operator Algebras II | 277, 451, 453 |
Melrose R. — The Atiyah-Singer index theorem (part 3) | 266 |
Reid M. — Undergraduate commutative algebra | 44—48, 54 |
Potier J.L. — Lectures on vector bundles | 18 |
Ward R.S., Wells R.O. — Twistor geometry and field theory | 171, 172, 206, 228 |
Lee J.M. — Introduction to Topological Manifolds | 296 |
Rotman J.J. — An Introduction to the Theory of Groups | 307 |
Hazewinkel M. (ed.) — Handbook of Algebra, Volume 4 | 66 |
Lorenz F., Levy S. — Algebra, Volume I: Fields and Galois Theory | 150 |
Ash R.B. — Abstract algebra: the basic graduate year | 4.7 |
Arveson W. — A Short Course on Spectral Theory | 21 |
Cartan E., Eilenberg S. — Homological Algebra, Vol. 19 | 4 |
Hilton P.J., Stammbach U. — A course in homological algebra | 14, 80 |
Shafarevich I.R., Kostrikin A.I. (ed.) — Basic Notions of Algebra | 218, 226—228, 231, 236 |
Stenstroem B. — Ring of quotients. Introduction to methods of ring theory | 6, 88 |
Hatcher A. — Algebraic Topology | 113 |
Blackadar B. — K-theory for operator algebras | 5.6.1 |
Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 112, 126, 149, 215 |
Hirzebruch F. — Topological Methods in Algebraic Geometry | 21 |
Shafarevich I.R., Danilov V.I., Iskovskih V.A. — Algebraic Geometry II : Cohomology of Algebraic Varieties. Algebraic Surfaces (Encyclopaedia of Mathematical Sciences) | 11 |
Atiyah M.F., Macdonald I.G. — Introduction to commutative algebra | 22 |
Freyd P. — Abelian categories. Introduction to theory of functors | 45 |
Ueno K. — Algebraic Geometry 2: Sheaves and Cohomology | 11 |
Tennison B.R., Hitchin N.J. (Ed) — Sheaf Theory | 12, 16, 50, 53 |
Blyth T.S., Robertson E.F. — Basic Linear Algebra | 111 |
Roggenkamp K.W., Huber-Dyson V. — Lattices Over Orders I | I 9 |
Vick J.W. — Homology theory. An introduction to algebraic topology | 17 |
Wilson J.S. — Profinite groups | 167 |
Liu Q., Erne R. — Algebraic Geometry and Arithmetic Curves | 4 |
Henneaux M., Teitelboim C. — Quantization of Gauge Systems | 204 |
Stein S.K., Szabo S. — Algebra and Tiling: Homomorphisms in the Service of Geometry | 67, 194, 195 |
Kato G., Struppa D.C. — Fundamentals of algebraic microlocal analysis | 5, 66, 68, 70, 88, 115, 116, 118, 156, 157, 159, 173—176, 191, 192, 200—203, 213, 215, 217, 221, 222, 231 |
Borceux F. — Handbook of Categorical Algebra 3 | II.32, II.33, II.95 |
Bourbaki N. — Algebra I: Chapters 1-3 | II, § 1, no. 4 |
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 1.14 |
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 419, 422 |
Pedicchio M. C., Tholen W. — Categorical Foundations: Special Topics in Order, Topology, Algebra, and Sheaf Theory | IV.198 |
Suzuki M. — Group Theory I | 198 |
Morimoto M. — Introduction to Sato's hyperfunctions | 259, 263 |
Young R.M. — An Introduction to Nonharmonic Fourier Series | 112, 126, 149, 215 |
Granas A., Dugundji J. — Fixed Point Theory | 601, 609, 613 |
Jensen C.U., Lenzing H. — Model Theoretic Algebra with particular emphasis on Fields, Rings, Modules | 402 |
Abhyankar S.S. — Local Analytic Geometry | 357 |
Stenstrom B. — Rings of quotients: an introduction to methods of ring theory | 6, 88 |
Hazewinkel M. — Handbook of Algebra (part 2) | 157, 674, 693 |
Borceux F. — Handbook of Categorical Algebra: Categories and Structures, Vol. 2 | 32, 33, 95 |
Fuhrmann P.A. — A Polynomial Approach to Linear Algebra | 29 |
Kashiwara M., Schapira P. — Sheaves On Manifolds | 29 |
Aschbacher M. — Finite Group Theory | 46 |
Mac Lane S., Birkhoff G.D. — Algebra | 326, 327, 413, 562 |
Anderson G.A., Granas A. — Fixed Point Theory | 601, 009, 013 |
Behrens E.-A. — Ring Theory: Volume 44 in Pure and Applied Mathematics | 166 |
Hungerford T.W. — Algebra | 175ff |
Curtis M.L. — Abstract Linear Algebra | 31 |
Mangiarotti L., Sardanashvily G. — Connections in Classical and Quantum Field Theory | 8 |
Ya Helemskii A., West A. — Banach and locally convex algebras | 47 |
Dold A. — Lectures on Algebraic Topology | 7 |
Cox D.A., Little J., O'Shea D. — Using Algebraic Geometry | 234ff, 246, 247, 251, 261, 262, 264, 265, 267, 275277, 285, 383, 403, 404, 453, 456, 467 |
Villareal R.H. — Monomial algebras | 5 |
Massey W.S. — A basic course in algebraic topology | xvi |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 397 |
Spanier E.H. — Algebraic Topology | 179 |
Bass H. — Algebraic K-theory | 21 |
Bechtell H. — Theory of groups | 23 |
Esposito G. — Dirac Operators and Spectral Geometry | 70 |
Greub W.H. — Linear Algebra | 45 |
Rodin Y.L. — Generalized Analytic Functions On Riemann Surfaces | 113, 115 |
Kashiwara M., Kawai T., Kimura T. — Foundations of Algebraic Analysis | 4 |
Porteous I.R. — Clifford Algebras and the Classical Groups | 18 |
Vasil'ev V. A., Sossinski A. — Introduction to Topology | 39 |
Northcott D. G. — An introduction to homological algebra | 14 |
Lane S.M. — Mathematics, form and function | 144 |
Frankel T. — The geometry of physics: an introduction | 598—600 |
Villarreal R.H. — Monomial Algebras | 5 |
Zeidler E. — Oxford User's Guide to Mathematics | 643 |
Pier J.-P. — Mathematical Analysis during the 20th Century | 271, 279 |
Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 223 |
Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 8, 84 |
Magurn B.A. — An algebraic introduction to k-theory | 44 |
Abhyankar S.S. — Lectures on Algebra Volume 1 | 311, 620 |
Kaijser S., Pelletier J.W. — Interpolation Functors and Duality | 14 |
Frankel T. — The geometry of physics: An introduction | 598—600
Exact sequence, homology |
Maclane S. — Homology | 11, 256 |
Cohn P.M. — Free Rings and Their Relations (London Mathematical Society Monographs) | 546 |
Krantz S. — Mathematical apocrypha redux | 94 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 397 |
Mac Lane S. — Mathematics: Form and Function | 144 |
Shafarevich I.R. (ed.) — Algebraic Geometry II: Cohomology of Algebraic Varieties. Algebraic Surfaces (Encyclopaedia of Mathematical Sciences. Volume 35) | 11 |
Krantz S. — Mathematical Apocrypha Redux: More Stories and Anecdotes of Mathematicians and the Mathematical (Spectrum) (Spectrum) | 94 |