Авторизация
Поиск по указателям
Stein S.K., Szabo S. — Algebra and Tiling: Homomorphisms in the Service of Geometry
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Algebra and Tiling: Homomorphisms in the Service of Geometry
Авторы: Stein S.K., Szabo S.
Аннотация: Often questions about tiling space or a polygon lead to other questions. For instance, tiling by cubes raises questions about finite abelian groups. Tiling by triangles of equal areas soon involves Sperner's lemma from topology and valuations from algebra. The first six chapters of Algebra and Tiling form a self-contained treatment of these topics, beginning with Minkowski's conjecture about lattice tiling of Euclidean space by unit cubes, and concluding with Laczkowicz's recent work on tiling by similar triangles. The concluding chapter presents a simplified version of Rédei's theorem on finite abelian groups: if such a group is factored as a direct product of subsets, each containing the identity element, and each of prime order, than at least one of them is a subgroup. Algebra and Tiling is accessible to undergraduate mathematics majors, as most of the tools necessary to read the book are found in standard upper division algebra courses, but teachers, researchers and professional mathematicians will find the book equally appealing.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1995
Количество страниц: 224
Добавлена в каталог: 11.04.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Abrams, A. vii
Adjacent clusters 38
Adjacent cubes 37
Alkhadjandi, Abu Mohammed 1 2
Bachet, C.G. 2
Bachman, G. 133
Banach, S. vi
Barnes, F.W. vi 200
Ben Alhocain, Abu Djafar Mohammed 1
Berger, R. 54 200
Boltanskii, V.G. 200
Brouwer's fixed point theorem 109
Centrally symmetric set 12
Chakerian, G.D. vii 120
Character (of finite abelian group) 163 193
Character group 193
Character principal- 163
Chrisman, M. vii 148
Clusters 35
Clusters equivalent 38
Complete polygon 110
Complete triangle with respect to a labeling 110
Complete triangle with respect to a valuation 118
Conway, J.H. vi 31 32 53 54 105 200
Corradi, K. 28 32 185
Covering 19
Covering by crosses 97
Covering by semicrosses 99
Covering n-covering (of a group) 100 102
Covering set (of a group) 100 102
cross 58
Cross, covering by 97
Cross, packing by 87
Cross, tiling by 60—62
Cyclic subset 27
Cyclotomic polynomial 198
Dad-del, A. 101 105
de Braijn, N.G. vii 48 54 200
Dehn, M.W. vii 140
Dekking, F.M. 200
Density of a covering 86
Density of a family 85
Density of a lattice covering 86
Density of a lattice packing 86
Density of a packing 86
Density of a Z-lattice covering 86
Density of a Z-lattice packing 86
Diophantos 1 2
Dummit, D.S. 185
Equidissection 119
Equidissection of centrally symmetric polygon 130—132
Equidissection of cube 120
Equidissection of regular hexagon 128—130
Equidissection of regular n-gon 120
Equidissection of square 118
Equidissection of trapezoid 121—126
Equivalent clusters 38
Equivalent vectors 38
Euler phi-function 198
Euler, L. 2 162
Everett, H. 105
Eves, H. 153
Exact sequence 67 194 195
Factorization (of a group) 26
Factorization normalized 156
Factorization replaceable, factor of 157
Fbote, R.M 185
Fejer, L. 155
Fejes-Toth, L. 201
Fermat, P. 2
Forcade, R.W. 78 82
Formal sum 196
Fourier, J.B.J 155
Freiling, C. vii
Freller, M. 80
Frenicle, B. 2
Furtwangler's conjecture 155
Furtwangler, P. 29 32 33
Gale, D. vii 200
Galovich, S. 82
Gauss, C.F. 5 6 32
Gobel, F. 201
Golomb, S. 53 54 80 82 200
Group ring 167
Grunbaum, B. 200 201
Hajos's theorem 26
Hajos's theorem for p-groups 160
Hajos, G. vi 22 23 26—29 32 152 155 156 159—161
Hales, A.W. 109 133
Hamaker, W. 80 82 105
Harmonic brick 52
Harmonic brick multiple of 52
Hermite, C. 9 10—12 15
Hickerson, D.R. vii 65 72 76 82 97
Hilbert, D. 10 15
Hocking, J.C. 55
Hsiang, W.Y. 86
Hurwitz, A. 10
Ireland, K. 133
Joy, K. 95
k-factorization 29
Karteszi, F. 80 82
Kasimatis, E.A. 81 120 128 130 133
Keller, O.H. 28 33
Kenyon, R. vii 201
Kepler, J. 85
Klarner, D. A. 55 201
Klee, V. vii 108 109 133
Korchmaros, G. 80
Laczkovich, M. vii 135 151—153 201
Lagarias, J.C. 28 31 33 53 54 200
Lagrange, J.L. 2
Lattice 3 189
Lattice integral 30
Lattice logarithm on S(k) 78
Lattice standard 5
Lattice, basis of 4 189
Lattice, determinant of 5 8
Lattice, dimension of 4
Lattice, fundamental parallelepiped of 5 189
Lattice, fundamental parallelogram of 5
Lenstra, A.K. 31 33
Lenstra, H.W. 31 33
Lovdsz, L. 31 33
m-equidissection 118
Mackinnon, N. 53 55
Mead, D.G. 120 133 201
Medyanik, A.I. 80
Mersenne, M. 2
Mertens' conjecture 31 32
Mertens, F. 31 32
Meschkowski, H. vi 201
Mills, W.H. 79 82
Minkowski's conjecture 22
Minkowski's conjecture algebraic form 26 27
Minkowski's conjecture generalization of 28 29
Minkowski, H. v vi 1 10—12 15—19 22 23 26—31 33 36 152 155 156
Molnar, E. 80 82
Monotonic matrix 94
Monsky, P. 108 109 118 131—133
Multiplier set 67
Odlyzko, A.M. 31 33
p-component (of finite abelian group) 74
P-dimension 74
p-group 74
p-part 180
Packing 19
Packing by crosses 97—99
Packing by semicrosses 88—97
Packing n-packing (of a group) 89
Packing set (of a group) 89
Pascal, B. 2
Penrose, R. 201
Perron, O. 28 33
Pollington, A.D. 78 82
Posa, L. vii 135 147
Pythagoras 1
Pythagorean Theorem 1
Q-lattice-tiling 35
Q-tiling 35
Quadratic form determinant of 8
Quadratic form positive definite 2
Quadratic form relation to lattice 5
Redei's theorem 28 156 182
Redei's theorem for cyclic p-groups 160
Redei's theorem for p-groups 165 176
Redei's theorem for type (p,p) 173
Redei's theorem general 182
Redei, L. vi vii 28 32 33 36 152 155—157 161—165 169 172 173 176 178 180—182 185 188
Replacement principle fifth 181
Replacement principle first 158
Replacement principle fourth 180
Replacement principle general 169
Replacement principle second 169
Replacement principle third 170
Richman, F. vii 107—109 113 118 131 133
Riemann hypothesis 31
Riemann, B. 31
Rinne, D. vii
Robinson, R.M. 29 33 54 201
Rogers, С.A. 105
Root of unity 198
Root of unity primitive 198
Rosen, M. 133
Schattschneider, D. 201
Schmidt, T. 22 34 35 55
Semicross 58
Semicross, covering by 99—102
Semicross, packing by 88—97
Semicross, tiling by 59—66
Senechal, M. vii
Set centrally symmetric 12
Set closed 12
Set convex 12
Setstar (also star body) 58
Shephard, G.C. 200 201
Shift 87
Shor, P. 28 33
Simplicial dissection 109
Sloane, N.J.A. 31 32 105
Spectrum 120
Spectrum principal 120
Sperner's Lemma 107 109 110
Sperner's lemma oriented version 130
Sperner, E. v 107 109—111 118 120 122 130 132
Splitting (of a group) 62 67
Splitting (of a group) and exact sequence 69 70
Splitting (of a group) coset- 77
Splitting (of a group) multipler set of 67
Splitting (of a group) nonsingular 70
Splitting (of a group) purely singular 70
Splitting (of a group) set 62 67
Splitting (of a group) singular 70
Star body 58
Stein, S.K 34 80—82 105 106 120 130 131 133 201
Strauss, E.G. 109 133
Szabo, S. 28 33 34 47 55 80—82 106 185 201
Szekeres, G. vii 152 201
Tarski, A. vi
te Riele, H.J.J. 31 33
Thomas, J. vii 107 109 118 131 133
Thompson, T. 106
Thurston, W.P. vi 55 201
Tiling 19
Tiling integer 35
Tiling k-fold 29
Tiling lattice 35
Tiling rational 35
Translate (of a set) 11
Twin (cubes) 22
Type (of a finite abelian group) 162
Ulrich, W. 80 82
Valuations (of a field) 111
Valuations (of a field) and dissections 117
Valuations (of a field) equivalent 111
Valuations (of a field) extension of 113—116
Valuations (of a field) p-adic 112
Van der Waerden, B.L. 133
Wagon, S. 201
Welch, L. 80 82
Woepcke, M.E. 34
Woldar, A.J. 83
Young, G.S. 55
Z-lattice-tiling 35
Z-tiling 35
Реклама