-method of interpolation 39 150
-method of interpolation as a Kan extension 150
-method of interpolation 38 150
-method of interpolation as a Kan extension 150
95 101
95
computable functors 89—90
computable functors 89—90
functor 61
interpolation space 16 64
-interpolation functor 66
functor 61
interpolation space 16 64
-interpolation functor 66
category 47
functor 59
Adjoint functors 47 50 59
Approximately reflexive 115
Approximating unit of a doolittle diagram 54
Aronszajn — Gagliardo functors 101—103 133 141
Banach couples 10
Banach couples, category of 10
Banach couples, regular 14—15
Basis 79—80
Basis for finite dimensional doolittle diagrams 82
Basis, normal 80
Category 44
Characterization of doolittle diagrams 8
Closed category 46—47
Coevaluation map 60—61
Cokernel 55
Colimit 54—55
Compact operators 126—127
Compactly quasi-injective 126
Compactly quasi-projective 126—127
Complex interpolation method 18 33
Computability of 104—105
Computable functors 89
Coproduct 8 55
Counit map 59
Discrete J-method of interpolation 21 137 139—140
Discrete K-method of interpolation 22 141
Doolittle diagrams 7 44
Doolittle diagrams, category of 11 45
Doolittle diagrams, finite dimensional 80
Dual doolittle diagrams 11—12
Dual functor 106—107
Dual functor of -interpolation functor 118
Dual functor of quasi-interpolation functor 117
Dual of -method of interpolation 154—159
Dual of 111 114 120
Dual unit of a doolittle diagram 54
Duality Theorem for 114
Duality Theorem for computable functors 112
Duality theorem for the complex method 40 114 156
| Duality theorem for the real method 22 114 141
Epimorphisms 56—57
Equivalence theorem for the real method 31
Evaluation map 60—61
Exact sequence 14
Extremal epimorphisms 56—57
Extremal monomorphisms 56—57
functor 44 58—59
General Duality Theorem 36 123
Inductive limit 86
Interpolation dual 68
Interpolation dual, characterization of 70
Interpolation space 16
Interpolation space, exact of exponent 22
Isomorphism in 38 53
Isomorphism in 53
J-functional 18
J-method of interpolation 21
K-functional 19
K-method of interpolation 21—22
Kan extension 60 93
Kernel 55
Left Kan extension 93—94
LIMIT 56
Metric approximation property 104
Monomorphisms 56—57
Morphisms 10 45
Natural transformations 44 61—62
Natural transformations, space of 61—62
Non-trivial doolittle diagrams 10
Operators 10 45
Operators of finite rank 84—85
Operators of rank 1 84
Operators, space of 11 47
Opposite category 47
PRODUCT 8 55
Pullback 8 44
Pushout 8 44
Quasi interpolation space 16 64
Quasi-injective 126
Quasi-interpolation functor 66
Quasi-projective 126—127
Quotient doolittle diagrams 58
Real interpolation method 18
Reiteration theorem for the real method 32
Right Kan extension 93—94
Strong adjoint functors 59
Strong functor 59
Structure Theorem for finite dimensional doolittle diagrams 83
Subdoolittle diagrams 58
Trace map 53
Transposed doolittle diagrams 46
Unit map 59
Unit of a doolittle diagram 54
Unital doolittle diagrams 54
Yoneda Lemma 63
|