| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Nagel R. — One-parameter semigroups of positive operators | 13, 34, 100, 110, 139, 168, 185, 205, 250, 258, 338 |
| Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 121, 137, 188, 216, 245, 302 |
| Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 88, 155, 432 |
| Grubb G. — Functional Calculus of Pseudo-Differential Boundary Problems | 1.1.1, 1.5.11—13, 1.6.13—16, 1.7.6, 1.7.15—17, 4.7 |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 323.A 442.D |
| Berger M. — A Panoramic View of Riemannian Geometry | see “Laplacian” |
| Bulirsch R., Stoer J. — Introduction to numerical analysis | 560 |
| Hamilton W.R. — The collected mathematical papers. Volume 3: algebra | 263, 376 |
| Trottenberg U., Schuller A., Oosterlee C. — Multigrid | 64, 101, 153, 162, 228, 274, 434 |
| Springer G. — Introduction to Riemann Surfaces | 166 |
| Lee J.M. — Introduction to Smooth Manifolds | 267 |
| Weinberger H.F. — First course in partial defferential equations with complex variables and transform methods | 49 |
| Smirnov V.I. — Higher mathematics. Vol.2 | 323 |
| Benson D. — Mathematics and music | 107, 398, 407 |
| Ladyzhenskaya O.A. — Mathematical theory of viscous incompressible flow | 5, 42, 47, 66, 120, 203 |
| Pedlosky J. — Waves in the ocean and atmosphere: introduction to wave dynamics | 26 |
| Balser W. — Formal power series and linear systems of meromorphic ordinary differential equations | 78 |
| Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 298, 319, 320 |
| Verwey E.J.W., Overbeek J.Th.G. — Theory of the stability of lyophobic colloids | 23 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 164, 177 |
| Borwein P., Choi S., Rooney B. — The Riemann Hypothesis | 128 |
| Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | (564) |
| Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 272 |
| Thomas A.D. — Zeta-functions | 168 |
| Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 65, 72, 372 |
| Hebey E. — Sobolev Spaces on Riemannian Manifolds | 3 |
| Martinez A. — An Introduction to Semiclassical and Microlocal Analysis | 9 |
| Lang S. — Diophantine Geometry | 173 |
| Harris B. — Iterated Integrals and Cycles on Algebraic Manifolds | 30 |
| Thaller B. — Visual quantum mechanics | 53, 88, 221 |
| Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 102, 157 |
| Agoshkov V.I., Dubovsky P.B. — Methods for Solving Mathematical Physics Problems | 2, 59 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 229, 263, 265, 270, 470,528 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 229,263, 265, 270 |
| Chorin A.J. — Vorticity and turbulence | 6 |
| Lang S.A. — Undergraduate Analysis | 316 |
| Iwaniec H., Kowalski E. — Analytic number theory | 89, 131, 132, 186, 362, 404, 563, 580 |
| Kohno T. — Conformal Field Theory and Topology | 146 |
| Rall D. — Computational Solution to Nonlinear Operator Equations | 31 |
| Fiedler B. — Global Bifurcation of Periodic Solutions with Symmetry | 97f |
| Lang S. — Real Analysis | 203 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 323.A, 442.D |
| Katayama T., Sugimoto S. — Statistical Methods in Control and Signal Processing | 503 |
| Chipot M., Quittner P. — Stationary Partial Differential Equations, Vol. 1 | 500, 501 |
| Thaller B. — The Dirac equation | 2 |
| Kozlov V., Mazya V., Rossmann J. — Spectral problems associated with corner singularities of solutions to elliptic equations | 36, 40 |
| Soule C. — Lectures on Arakelov Geometry | 92, 103, 122 |
| Brocker Th., Dieck T.T. — Representations of Compact Lie Groups | 88,122 |
| Shanbhag D.N. (ed.), Rao C.R. (ed.) — Stochastic Processes - Modelling and Simulation | 394, 395 |
| Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 12.16 |
| Bao G., Cowsar L., Masters W. — Mathematical Modeling in Optical Science | 211 |
| Schechter M. — Spectra of partial differential operators | 69 |
| Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 103 |
| Chung F.R.K. — Spectral Graph Theory | 48, 50, 153 |
| Eschenauer H., Olhoff N., Schnell W. — Applied structural mechanics : fundamentals of elasticity, load-bearing structures, structural optimization | 15, 18, 97, 106 |
| Luck W. — Transformation Groups and Algebraic K-Theory | 375 |
| Fomenko À.Ò., Mishehenko A.S. — A Short Course in Differential Geometry and Topology | 146 |
| Cercignani C. — Theory and Application of the Boltzman Equation | 90 |
| Granas A., Dugundji J. — Fixed Point Theory | 115 |
| Bethe H.A., Salpeter E.E. — Quantum Mechanics of One-and-Two-Electron Atoms | 345 |
| McCormick S.F. — Multigrid Methods (Frontiers in Applied Mathematics) | 106, 107, 108, 109 |
| Betten J. — Creep Mechanics | 25, 28 |
| Zong Ch. — Sphere packings | 127 |
| Ike E.R., Sabatier P.C. (Ed) — Scattering: Scattering and Inverse Scattering in Pure and Applied Science | 1690-1691 |
| Olver P.J., Shakiban C. — Applied linear. algebra | 380 |
| Kreyszig E. — Advanced engineering mathematics | 408 |
| Kashiwara M., Schapira P. — Sheaves On Manifolds | 469 |
| Ding H., Chen W., Zhang L. — Elasticity of Transversely Isotropic Materials | 46, 190, 192, 247, 257, 316, 345, 366, 387 |
| Anderson G.A., Granas A. — Fixed Point Theory | 115 |
| Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 476 |
| Beutler G. — Methods of Celestial Mechanics: Volume I: Physical, Mathematical, and Numerical Principles | I 101 |
| Buser P. — Geometry and spectra of compact riemann surfaces | 184, 366 |
| Smith P.A., Eilenberg S. — Pure and Applied Mathematics | 32 |
| Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology | 118, 312 |
| Hermann R. — Differential geometry and the calculus of variations | 27 |
| Argyros I. — Computational Theory of Iterative Methods | 14 |
| Thomas A.D. — Zeta functions, introduction to algebraic geometry | 168 |
| Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 42 |
| Dynkin E.B., Yushkevich A.A. — Markov processes; theorems and problems | 8, 73, 147, 177, 222 |
| Dym H., McKean H.P. — Fourier Series and Integrals | 134, 242—247, 251—253, 255, 265—266, 268—271, 276—279 |
| Springer G. — Introduction to Riemann Surfaces | 166 |
| Esposito G. — Dirac Operators and Spectral Geometry | 24 |
| Schulz F., Dold A. (Ed), Eckmann B. (Ed) — Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampere Equations in Two Dimensions | 39 |
| Taylor M.E. — Partial Differential Equations. Nonlinear Equations (vol. 3) | 95, 131, 201 |
| Adams D.R., Hedberg L.I. — Function spaces and potential theory | 2 |
| Carroll R.W. — Mathematical physics | 15 |
| Lang S. — Undergraduate analysis | 316 |
| Avramidi I.G. — Heat Kernel and Quantum Gravity | 111, 116, 117 |
| Thaller B. — The Dirac equation | 2 |
| Dunkl C.F., Xu Y. — Orthogonal Polynomials of Several Variables | 34 |
| Coffey W.T., Kalmykov Yu.P., Waldron J.T. — The Langevin equation | 116, 131, 330 |
| Lane S.M. — Mathematics, form and function | 314 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 164, 177 |
| Biedenharn L.C., Louck J.D. — Angular momentum in quantum physics | 304, 311 |
| Miller W. — Symmetry and Separation of Variables | 11 |
| Zeidler E. — Oxford User's Guide to Mathematics | 285, 361, 364, 499 |
| Kozlov V., Mazya V., Rossmann J. — Elliptic boundary value problems in domains with point singularities | 65 |
| Stoll W. — Value Distribution Of Holomorphic Maps Into Compact Complex Manifolds | 82 |
| Jahne B., Haubecker H. — Computer vision and applications | 331 |
| Rektorys K. — Survey of Applicable Mathematics.Volume 2. | II 174 |
| Treves F. — Topological Vector Spaces, Distributions And Kernels | 324 |
| Peszat S., Zabczyk J. — Stochastic partial differential equations with Levy noise: An evolution equation approach | 220, 221, 230 |
| John F. — Partial Differential Equations | 2, 94 |
| Vanmarcke Erik — Random Fields : Analysis and Synthesis | 122—123 |
| Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 172 |
| Fung Y. — A First Course in Continuum Mechanics: for Physical and Biological Engineers and Scientists | 232 |
| Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 134, 242—247, 251—253, 255, 265—266, 268—271, 276—279 |
| Groesen E., Molenaar J. — Continuum Modeling in the Physical Sciences (Monographs on Mathematical Modeling and Computation) | 54 |
| Lions J-L., Dautray R. — Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods | 173 |
| Kanwal R.P. — Generalized functions: Theory and technique | 100, 131, 132, 149, 245, 252, 259, 276 |
| Blanchard P., Bruening E. — Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Method | 145 |
| Kleinert H. — Gauge fields in condensed matter (part 2) | 139 |
| Balser W. — Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations | 78 |
| Sommerfeld A. — Partial Differential Equations in Physics | 32 |