Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Fiedler B. — Global Bifurcation of Periodic Solutions with Symmetry
Fiedler B. — Global Bifurcation of Periodic Solutions with Symmetry



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Global Bifurcation of Periodic Solutions with Symmetry

Àâòîð: Fiedler B.

ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1988

Êîëè÷åñòâî ñòðàíèö: 144

Äîáàâëåíà â êàòàëîã: 14.08.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
1986      19 96
ALCON      109
Analytic semigroup      9 12 25f 31 84 91 97f 116
Answers      3 11 96—101 106f 115
Approximation      38 84
Approximation, generic      3 10 13 23 33f
Approximation, genericand equivariant      3 13 23 85—91 108—111
Arms, number of      99f 105
Arms, reduction      99
Arnold — Bogdanov — Takens singularity      see “B-point”
Arrhenius kinetics      103
Artin conjecture      19 97
Assumptions, analyticity      22 34 46 87f
Assumptions, boundedness      22 25 85—90
Assumptions, equivariance      2 25
Assumptions, genericity      20 49 59 68 84 121f 129f
Assumptions, nondegeneracy      9 22 46 85—90 98 112—115
Assumptions, regularity      16 130f
auto      109
Axisymmetry      98f
B-point      109 113f
Baire space      13 26
Belousov — Zhabotinskii reaction      3—6 92 99 104f
Benard convection      104
BIFPACK      109
Bifurcation      see also “B-point” “Flip” “Flip-flop” “Flop” “Freezing” “Hopf E.” “Jug-handle” “Ljapunov “Period” “Periodic” “Saddle-node” “Torus” “Stationary” “Symmetry “Type”
Bifurcation, diagram      3f 13 31f 68 86 89 109—114
Bifurcation, multiparameter      3 9 109 110 114f
Bifurcation, with two parameters      3 103 110 112—114
Binary orbit      11f 18—24 67 79 85f 94 98 101 108
Biological clock      102
Brouwer degree      4 23 27—29 110
Brusselator      92—101
Cartan decomposition      99
Catalysis      103
Catastrophe, blue sky      113 115
Catastrophe, theory      9 109
Center      16 93 95
Center and symmetry      48f
Center and virtual periods      42f 46f 85
Center index      17
Center index and orbit index      33 77—83 91 104 E.
Center manifold      9
Center, continuum of      34 46f 87
Center, generic      16
Center, generic, genericity of      48f 121f
Center, H-center      16
Change of stability      1f 9 12 17 “Hopf E.
Chaos      103 114
Characteristic equation      93f
China      17
Compactness assumption for continua      84f
Compactness assumption for groups      2 39 45 74
Compactness assumption for semiflows      25f 91 122 127f
Complexification      17 23 42 119f
Concentric wave      see “Wave”
Continuum of periodic solutions      see also “Center”
Continuum of periodic solutions, excluding period, global      12f 21 24 34 85f 95f 101 110f 113f
Continuum of periodic solutions, including period, global      9 31 96 100 110f
Continuum of periodic solutions, limiting      33 84f
Continuum of periodic solutions, local      107f
Continuum of periodic solutions, unbounded      21 24 27f 33f 88f 99f
Coupled oscillators      2f 8 10 92—97 102f 105
Coupled oscillators with electric coupling      103
Crossing number      1 17 78 111 “Hopf E. “Transverse”)
Crossing number, net      23 94f
Crossing number, odd      9 27 96 100
Curvature condition      16 28 30 53 57
Curvature condition, genericity of      103 130f 134
Cusp      109
Cyclic group      6
Degenerate stationary solutions      98 114f
DERPER      109
Dihedral group      3 92—97 104 112
Discrete wave      see “Wave”
Equivariant      see “Assumptions” “Hopf E.” “Hopf H. “Orbit “Snake” “Stationary”
Fermat's last theorem      19
Field — Koros — Noyes model      92
Fixed point subspace      5 10 12 15 45 131
Fixed point subspace and orbit index      81
Fixed point subspace, dimension of      101 102 104 108
Flip      30 57
Flip, doubling      30 55 59—61
Flip, pitchfork      59—61
Flip-flop      57
Flip-flop, doubling      59—61 65f
Flip-flop, pitchfork      59—61
FLOP      54
Flop, doubling      54 59—61 65f
Floquet multipliers      29 91 109 129 131
Floquet multipliers and Floquet exponents      69
Floquet multipliers and orbit index      70—82
Floquet multipliers and virtual periods      43
Floquet multipliers of rotating waves      134
Fluid dynamics      3 104
Fredholm map      35f 69 91 117f
Fredholm map, index      117f 123 130
Freezing      7 50f 67 81—83 114 132f
Frequency doubling      102
Frozen wave      see “Wave”
Fruit of the Loom      130 133
Fuller index      9 29 110 112
GENERIC      13 (see also “Approximation” “Localization” “Perturbations”)
global      see “Continuum” “Hopf E.” “Stationary”
Graph of oscillators      102f
Haar measure      39
Hamiltonian systems      9 31 102
Heteroclinic orbit      103f
Heterogeneous oscillations      3 96—105
Hint      65
Homoclinic orbit      106 113—115
homogeneous solution      3 93—98
Homogeneous solution, nonhomogeneous solution      3 96—105
Homotopy invariance of Brouwer degree      23 29 110
Homotopy invariance of the Fuller index      110
Homotopy invariance of the Hopf index      23 106 112—114
Homotopy invariance of the orbit index      13 32f 70—77 81f 91
Hopf, E. bifurcation      see also “Center”
Hopf, E. bifurcation, global      1f 7 9f 110f
Hopf, E. bifurcation, global, equivariant      2f 10f 15—26 29—34 79f 82f 92—104 110 113f
Hopf, E. bifurcation, history      9f
Hopf, E. bifurcation, local      1f 9f 79
Hopf, E. bifurcation, local, equivarint      3 10 45f 48f 100 106f
Hopf, E. bifurcation, local, infinite-dimensional      9
Hopf, E. bifurcation, local, planar      9
Hopf, E. index, global equivariant      2 (see also “Center”)
Hopf, H. theorem      110
Horseshoe      114
Hyperbolicity of periodic solutions and type 0, $\mathbb{O}_k$ solutions      31 127 129
Hyperbolicity of periodic solutions and virtual period/symmetry      11 96 100
Hyperbolicity of periodic solutions at generic centers      16 123f
Hyperbolicity of periodic solutions, rotating waves      51 133
Hypercycle      102
INDEX      see “Homotopy invariance” “Fredholm” “Fuller” “Hopf E.” “Orbit”
Induction over period/symmetry      116 124 127—134
Infinitesimal rotation      7 25 49 81 88
Inhomogeneous      see “Homogeneous”
Instability      see “Stability” “Unstable”
Integral equations      12 38 103
Irreducible      see “Representation”
Isotropy group      4
Isotropy group, maximal      12 95 100f 104 106f
Isotropy group, submaximal      108 (see also “Virtual”)
Isotypic, action      119f
Isotypic, decomposition      22 74f 95 99
Iterated, maps      9 29 54 56f 62
Iterated, multiplication by two      11 18f
J-homomorphism      110
j-jug-handle      111f
Jug-handle      31f 110f
Kupka — Smale theorem      13 31 48
Langmuir — Hinshelwood kinetics      103
Laplace operator      97f
Laplace operator, discretized      92f 98
Laser equations      104
Lattices, and virtual symmetry      45
Lattices, crystal      103
Lattices, hexagonal      104
Linked periodic solutions      32
Ljapunov center theorem      102
Ljapunov — Schmidf reduction and virtual symmetry      37 53
Ljapunov — Schmidf reduction at rotating waves      50 132
Ljapunov — Schmidf reduction at secondary bifurcations      66 130f
local      see “Global”
Localization of genericity      116 122 127f
Loop in parameter space      112f
Loop of periodic solutions      31f 111f
Lorenz equation      114
Manifolds of solutions      114f
Maximal      see “Isotropy” “Torus”
Minimal      see “Period”
Mode interaction      104
Models      92 102f
Multiparameter      see “Bifurcation”
Net crossing      see “Crossing number”
Network      see “Graph”
Neural nets      103
Non-free group action      5 110
Normal form      62 102 104 113f
Normal form, Arnold normal form of matrices      119—121
Numerical, algorithms      109
Numerical, analysis      4 102 109
Numerical, simulation      98 100 103
Obstruction      112—114
Odd      see “Crossing number”
Operator setting for periodic solutions      7 10 31 48 66 68
Orbit index, equivariant of discrete waves      70
Orbit index, equivariant of rotating waves      81
Orbit index, nonequivariant      32 (see also “Floquet” “Homotopy” “Stability”)
Orthogonal groups, $O(2) \times SO(2)$      104
Orthogonal groups, O(2)      14 104 108f 112 114
Orthogonal groups, O(3)      92 97—101 107
Orthogonal groups, O(N)      2
Orthogonal groups, SO(2)      6 14 34 103 110 115
Parameters      see “Bifurcation”
Pattern      3f 6 97 99 104
Period      see also “Virtual”
Period, blowup      21 24 50 68 110—114
Period, doubling      13 18 30f 47 51—62 72—76 81 110f 127 130
Period, doubling, cascade      114
Period, jump      13 29 59f 73 86 111f 127
Period, lower bound on      90 127 129
Period, minimal      5 12 31f 49f 73 110f
Period, minimal and transversality      31 116 124f
Period, upper bound on      132 134
Periodic solutions      see “Bifurcation” “Hopf E.” “Hyperbolicity” “Linked” “Operator “Poincare” “Symmetry”
Perturbations      see also “Generic” “Singular” “Transversality”
Perturbations, breaking equivariance      13f 104 109
Perturbations, of centers      49 86 122f
Perturbations, of matrices      118f
Perturbations, of Poincare maps      62 66 124f
Perturbations, of rotating waves      7 132f
Perturbations, of stationary solutions      28—31
Petri dish      6
Pitchfork      30 53f 57 59f 71f 109 112 127
PITCON      109
PL methods      109
Poincare map      29f 50 55—68 118 124f 131 134
Poincare section      29 50 55 115 124 130
Poincare time      55 62f 125
Poincare — Andronov — Hopf bifurcation      see “Hopf E.
Proper      117 123 130
Quaternions      114f
Questions      see also “Answers”
Questions, open      68 112 115
Questions, principal      2
Reaction diffusion systems      3 10 97—101 109
Regularity      see “Assumptions”
Relative, equilibrium      115
Relative, periodic solution      115
Representation, cyclic      17 22 118f
Representation, irreducible      17 22 74f 109 110 118f
Representation, subspace      2 12 22f 75 81 95 99 120
Rescaling      7 35 70—77 80
Resolvent      25f 69 91
Resonance      102 108 114
Roots of unity      30f 43 119 127 129 134
Rotating wave      see “Wave”
Rotation number      see “Torus”
Saddle-node bifurcation      31
Sard theorem      13 28 31 118
Sard theorem, Smale — Sard theorem      118
Scylla & Charybdis      109
Silnikov homoclinic theorem      114
Singular perturbations      96 99 101
Singularity      4 13f 48 104 109 112f
Singularity, Arnold — Bogdanov — Takens      see “B-point”
Singularity, theory      9 104 106 109
Sink      80 83
Smale      see “Horseshoe” “Sard
Snake      21
Snake, equivariant      79
Snake, global      33 79 82
Solution      see “Manifold” “Periodic” “Stationary”
Source      80 83
Speed      see “Rotating wave”
Spherical harmonics      98f 107
Spherical pendulum      102
Spiral cells      104
spirals      3f 99f 104f
Stability      104 108f
Stability and orbit index      104
Stability, exchange of      33 73 76 77—79 104
Stationary solutions, bifurcation of      see also “Bifurcation” “Degenerate” “Flop” “Saddle-node” “Turn”
Stationary solutions, bifurcation of global      9 27f 34
Stationary solutions, bifurcation of global equivariant      10 110
Stationary solutions, bifurcation of local      9
Stationary solutions, bifurcation of local equivariant      10
Stratification      116
Stroboscope      66
Strongly monotone systems      109
Swallow-tail      109
Symmetry      see also “Virtual”
Symmetry, breaking      10 31 52 57 59f 66 102 112 127 131 134
Symmetry, of periodic solutions      6
Symmetry, of periodic solutions, control over      9—13 21 24 96f 110f
Syntheses      34 45 112
Target pattern      see “Pattern”
Taylor — Couette flow      104
Temptation      64
Topological, approach      9f 13 29 68 103 106 109—114
Topological, restrictions      4
Topological, results      3 9f 109f
Topological, “charge”      99f
Topology, of sets      84
Topology, uniform operator      25 73 77
Topology, weak      13 26 130
Torus, group      45 104
Torus, invariant      103f 114f
Torus, invariant, periodically foliated      59 104 115
Torus, invariant, primary bifurcation of      106
Torus, invariant, rotation number on      115
Torus, invariant, secondary bifurcation of      104f 114f
Torus, lattice      45
Torus, maximal      99f
Transversality      116—134
Transversality, assumption      117 124 130f
Transversality, theorem      117 122 127 130—134
Transverse crossing      16 28 30 53 57 71f 123 130f
Turing ring      2 7 92—97 102—105
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå