|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Eudoxus
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 20 187 | Hardy G.H., Wright E.M. — An Introduction to the Theory of Numbers | 40 | Wolff P. — Breakthroughs in mathematics | 43, 118 | Dodge C.W. — Sets, logic & numbers | 44, 260 | Pesic P. — Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability | 17—18, 183m | Lightstone A.H., Robinson A. — Nonarchimedean Fields and Asymptotic Expansions | 61 | Harmuth H.F. — Sequency theory: foundations and applications | 1 | Dodge C.W. — Foundations of algebra and analysis | 44, 260 | Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 12—13 | Ewald W. — From Kant to Hilbert, Vol.2 | 171, 754, 766 | Kline M. — Mathematics in Western Culture | 40, 80—81, 83, 212 | Ewald W. — From Kant to Hilbert, Vol.1 | 171 | Devlin K.J. — Language of Mathematics: Making the Invisible Visible | 124, 300 | Sokolnikoff I.S. — Advanced Calculus | 9 | Aczel A.D. — Descartes' Secret Notebook: A True Tale of Mathematics, Mysticism, and the Quest to Understand the Universe | 67, 232, 233 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 27, 46, 48—50, 68, 145, 154 | Stillwell J. — Yearning for the Impossible: The Surprising Truths of Mathematics | 13 | Turnbull H.W. — The Great Mathematicians | 13, 16, 19, 23, 24—29, 32, 34, 52, 118, 122 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 27, 46, 48—50, 68, 145, 154 | Coxeter H.S.M. — Introduction to Geometry | 201 | Lerner K.L., Lerner B.W. — The gale encyclopedia of science (Vol. 6) | 1:676 | National Council of Teachers of Mathematics — Historical Topics for the Mathematics Classroom Thirty-First Yearbook | 29, 35—36, 71, 204, 379, 380, 382, 389, 390, 402 | Fowler D.H. — Mathematics of Plato's Academy: A New Reconstruction | 16, 20, 24, 26, 27, 103, 114, 118—125, 129, 140, 209, 229, 288, 293, 353, 357, 359, 361, 383, 387, 393, 401 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 27, 46, 48—50, 68, 145, 154 | Kneale M. — Development of Logic | 61, 379, 391, 662 | Heath T.L. (ed.) — The Thirteen Books of Euclid's Elements, Vol. 2 | 99, 280, 295 | Heath T.L. (ed.) — Thirteen Books of Euclid's Elements, Vol. 1 | 1, 37, 116 | Weyl H. — Symmetry | 136 | Young R.M. — Excursions in Calculus: An Interplay of the Continuous and the Discrete | 27 | Aleksandrov A.D., Kolmogorov A.N. — Mathematics. It's content, methods, and meaning (Vol. 1) | 26 | Weyl H. — Philosophy of mathematics and natural science | 31, 39, 45 | Rosenfeld B.A. (Author), Shenitzer A. (Translator), Grant H. (Assistant) — A history of non-Euclidean geometry: evolution of the concept of a geometric space | 35, 89—90, 92, 123, 191 | Hardy G.H., Wright E.M. — Introduction to theory of numbers | 40 | Hardy G.H., Wright E.M. — An Introduction to the Theory of Numbers | 40 | Browder A. — Mathematical Analysis: An Introduction | 26 | Coxeter H.S.M. — The Real Projective Plane | 138 | Peter Wolff — Breakthroughs in mathematics | 43, 118 | Hayes D.F. (ed.), Shubin T. (ed.) — Mathematical Adventures for Students and Amateurs | 273 | Aleksandrov A.D., Kolmogorov A.N., Lavrent'ev M.A. — Mathematics, its content, methods, and meaning | 26 | Beth E.W. — The foundations of mathematics: A study in the philosophy of science | 14f., 37, 90, 141, 334f., 365, 492 | Prasolov V.V., Tikhomirov V.M. — Geometry | 132 | Fink K. — A brief history of mathematics | 79, 199, 204, 210, 212, 223 | Heath Th.L. — Diophantus of Alexandria. A Study in the History of Greek Algebra | 124 | Heath T.L. (ed.) — Thirteen Books of Euclid's Elements, Vol. 3 | I. 1, 37, 116, II. 40, 99, 280, 295, III. 442, 522, 523, 526 | Moritz R.E. — On Mathematics and Mathematicians | 904 | Marsden J., Weinstein A. — Calculus 1 | 4 | Katz V.J. — A History of Mathematics: An Introduction | 46, 50, 91 | Lane S.M. — Mathematics, form and function | 76 | Heath T. — A History of Greek Mathematics, Vol. 2 | 24, 118, 119, 121, 320, 322—324 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 2 | 171, 754, 766 | Bell E.T. — Men of mathematics. Volume 2 | 19, 25ff., 449, 529, 533, 573, 576, 634 | Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 90 | Klein F. — Elementary Mathematics From an Advanced Standpoint: Arithmetic, Algebra, Analysis | 219 | Kline M. — Mathematics for the Nonmathematician | 17, 125, 190 | Stillwell J. — Mathematics and its history | 25, 39, 40, 44, 47 | Eves H.W. — Mathematical circles revisited | 135 | Bell E.T. — Mathematics: Queen and Servant of Science | xiv, 272, 397 | Muir J. — Of Men and Numbers: The Story of the Great Mathematicians | 15 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 1 | 171 | Mac Lane S. — Mathematics: Form and Function | 76 | Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years | 31 | Kline M. — Mathematical thought from ancient to modern times | 27, 46, 48—50, 68, 145, 154 | Brezinski C. — History of Continued Fractions and Padé Approximants | 7, 20 | Alexanderson G. — The harmony of the world: 75 years of Mathematics Magazine MPop | 9 | Eves H. — Mathematical Circles Revisited: A Second Collection of Mathematical Stories and Anecdotes | 135 | Popper K.R. — Quantum theory and the schism in physics | 162 | Truss J.K. — Foundations of Mathematical Analysis | 110 | Truss J. — Foundations of mathematical analysis | 110 | J. K. Truss — Foundations of mathematical analysis MCet | 110 |
|
|