Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Wolff P. — Breakthroughs in mathematics
Wolff P. — Breakthroughs in mathematics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Breakthroughs in mathematics

Àâòîð: Wolff P.

ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Ïîïóëÿðíûå èçäàíèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1963

Êîëè÷åñòâî ñòðàíèö: 284

Äîáàâëåíà â êàòàëîã: 10.12.2004

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Absurd, reduction to the      60—62 155
Addition      150
Addition in Peano’s theory      166
Algebra, Boole’s symbolism and      271—272 (see also “Boole George”)
Algebra, geometrical problems solved by      see “Geometry (Descartes)”
Analytic geometry      96 104
Analytic geometry, advantages of      109—111
Angles in Euclid’s Elements      44—45
Angles in Lobachevski      74—77 84—92
Angles, defined      16 46—47
Angles, measured by Gauss      95
Angles, propositions      26—31 37
Apollonius      96
Archimedes, life of      129
Archimedes, The Sand Reckoner      116—126 129—137
Aristarchus of Samos      117—118 131
Arithmetic, geometry and      103—104
Arithmetic, Peano’s analysis of      164—169 179 188
Arithmetic, postulates in      126—127
Arithmetic, reduced to logic      188—189 190 194 Numbers”)
Bernoulli, Daniel      207
Bernoulli, Jean      207
Bolyai, John      80
Boole, George, accomplishment of      275
Boole, George, background of      268
Boole, George, The Laws of Thought      243—266 268—275
Boole, George, The Laws of Thought, classes of signs      246—256 269
Boole, George, The Laws of Thought, derivation of laws of symbols      256—266 275
Boole, George, The Laws of Thought, laws of symbols      247—256 269—271
Buffon, Comte Georges de      229
Cantor, Georg      140
Chiliagon, in Archimedes      118 133
Circles in Euclid      15—17 (see also “Great circles”)
Classes in Boolean algebra, law of contradiction      265—266 274
Classes in Boolean algebra, symbols for      247—256 264—265 269—271
Classes in definition of number      169—176 184—188
Classes, hereditary      177 180 191
collections      see “Classes”
Coloring of maps      217
Common notions in Euclid’s Elements      18 50—51
Conic sections, defined      96
Constructions in Descartes      97—102 104—110
Constructions in Euclid’s Elements      52—59
Constructions, compared with Descartes      106—107
Constructions, propositions      17—21 26—28 37
Continuity and Irrational Numbers (Dedekind)      138—149 152—160
Contradiction, principles of      265—266 274
Converse domain      173
Counting, Archimedes on      116—126 129—137
Counting, decimal system and      137
Counting, Russell on      186 (see also “Arithmetic; Numbers”)
Curves, equations for      107—109
Cutting and not-cutting lines      70 84
Decimal system, Archimedes’ substitute for      137
Dedekind, Continuity and Irrational Numbers      138—149 152—160
Dedekind, Richard, background of      152
Deductiveness as characteristic of mathematics      267—268
Definitions in Euclid’s Elements      16—17 45—47
Definitions in Euclid’s Elements, of numbers      114—115 126—127 150
Descartes, Geometry      97—102
Descartes, Geometry vs. Euclid’s method      104—110
Descartes, Rene, background of      102—103
Division by zero      151—152
Division, number system and      150—151
Domain, defined      173
Duality, law of, in Boole      266
Earth, diameter of, in Archimedes      117 132
Elements of Geometry      see “Euclid’s Elements of Geometry”
Euclid, his method vs. Descartes’      109—110
Euclid, significance of      43
Euclid’s Elements of Geometry —Book I      15—41 43—62
Euclid’s Elements of Geometry —Book I, common notions      18 50—51
Euclid’s Elements of Geometry —Book I, definitions      16—17 45—47
Euclid’s Elements of Geometry —Book I, postulates      17 47—50
Euclid’s Elements of Geometry —Book I, Proposition 1      17—19 52—54
Euclid’s Elements of Geometry —Book I, Proposition 10      26
Euclid’s Elements of Geometry —Book I, Proposition 11      27
Euclid’s Elements of Geometry —Book I, Proposition 12      28
Euclid’s Elements of Geometry —Book I, Proposition 13      29
Euclid’s Elements of Geometry —Book I, Proposition 14      29—30
Euclid’s Elements of Geometry —Book I, Proposition 15      30—31
Euclid’s Elements of Geometry —Book I, Proposition 16      31—32 91—92 94
Euclid’s Elements of Geometry —Book I, Proposition 17      32
Euclid’s Elements of Geometry —Book I, Proposition 18      33
Euclid’s Elements of Geometry —Book I, Proposition 19      33—34
Euclid’s Elements of Geometry —Book I, Proposition 2      19—20 54—57
Euclid’s Elements of Geometry —Book I, Proposition 20      34
Euclid’s Elements of Geometry —Book I, Proposition 21      35
Euclid’s Elements of Geometry —Book I, Proposition 22      36
Euclid’s Elements of Geometry —Book I, Proposition 23      37
Euclid’s Elements of Geometry —Book I, Proposition 24      37—38
Euclid’s Elements of Geometry —Book I, Proposition 25      38—39
Euclid’s Elements of Geometry —Book I, Proposition 26      39—41
Euclid’s Elements of Geometry —Book I, Proposition 27      63—64 81—82
Euclid’s Elements of Geometry —Book I, Proposition 28      64—65
Euclid’s Elements of Geometry —Book I, Proposition 29      65—66 82—83
Euclid’s Elements of Geometry —Book I, Proposition 3      20—21 57
Euclid’s Elements of Geometry —Book I, Proposition 30      66—67
Euclid’s Elements of Geometry —Book I, Proposition 31      67
Euclid’s Elements of Geometry —Book I, Proposition 32      67—68 85
Euclid’s Elements of Geometry —Book I, Proposition 4      21—22 57—59
Euclid’s Elements of Geometry —Book I, Proposition 47      108—109
Euclid’s Elements of Geometry —Book I, Proposition 5      22—23 59—60
Euclid’s Elements of Geometry —Book I, Proposition 6      23—24 60—62
Euclid’s Elements of Geometry —Book I, Proposition 7      24
Euclid’s Elements of Geometry —Book I, Proposition 8      25
Euclid’s Elements of Geometry —Book I, Proposition 9      26
Euclid’s Elements of Geometry —Book II      15
Euclid’s Elements of Geometry —Book III      15
Euclid’s Elements of Geometry —Book IV      15
Euclid’s Elements of Geometry —Book IX      15 103
Euclid’s Elements of Geometry —Book IX Proposition 20      115—116 127—129
Euclid’s Elements of Geometry —Book V      15 43
Euclid’s Elements of Geometry —Book VI      15
Euclid’s Elements of Geometry —Book VII      15 103
Euclid’s Elements of Geometry —Book VII, definitions      114—115 126—127
Euclid’s Elements of Geometry —Book VIII      15 103
Euclid’s Elements of Geometry —Book X      15 43
Euclid’s Elements of Geometry —Book XI      15
Euclid’s Elements of Geometry —Book XII      15
Euclid’s Elements of Geometry —Book XIII      15 43
Eudoxus      43 118
Euler on geometry of position (topology)      197—206 207—215
Euler, Leonhard, background of      205—207
Extraordinary, defined      228
Fifth Postulate of Euclid      17
Fifth Postulate of Euclid in analytic geometry      109
Fifth Postulate of Euclid, Euclid’s first use of      82—83
Fifth Postulate of Euclid, Saccheri’s critique of      78—80
Fifth Postulate of Euclid, substitutes for      83—84 94
Finitude and mathematical induction      175—182 190—194
Fractions      151
Frege, Gottlob      169 180n 181 188
Gambler’s fallacy      238—239
Gauss, Karl Friedrich      152
Gauss, measures angles      95
Gelon, King of Syracuse      116 129 130
Geodesics      93—94
Geometry (Descartes)      97—102
Geometry (Descartes) vs. Euclid’s method      104—110
Geometry, analytic      96 104
Geometry, analytic, advantages of      109—111
Geometry, Euclidean      see “Euclid’s Elements of Geometry”
Geometry, non-Euclidean      80
Geometry, non-Euclidean, Riemannian      93 94
Geometry, non-Euclidean, which is most suitable?      94—95 (see also “Lobachevski Nicholas”)
Geometry, of position      see “Topology”
Geometry, postulates in      52—53
Geometry, proof in      43
Geometry, proof in reduction to the absurd      60—62
Geometry, proof in superimposition      58
Geometry, proof in synthetic vs. analytic method      109—110
Geometry, thinking scientifically about      40—43
Great circles, non-Euclidean geometry and      91—94
Heine, E.      139
Heliocentric theory      117—118 130—132
Hereditary property of numbers      177 180 191
Induction, mathematical      165 177—182 190—194
Inductive numbers      182
Inductive property of numbers      177 191
Infinity of numbers in Archimedes      116—126 129—137
Infinity of numbers in Russell      179
Introduction to Mathematical Philosophy (Russell)      161—194
Introduction to Mathematical Philosophy (Russell), definition of number      169—176 184—188
Introduction to Mathematical Philosophy (Russell), finitude and mathematical induction      175—182 190—194
Introduction to Mathematical Philosophy (Russell), series of natural numbers      161—169
Irrational numbers, described by Dedekind’s cut      145—149 152—160
Irrational numbers, discovered      149
Konigsberg, problem of      198—206 207—216
Lagrange, Joseph Louis      219
Language      see “Logic”
Laplace, Pierre Simon de, background of      230—231
Laplace, Pierre Simon de, on probability      219—230 233—241
Laws of Thought, The (Boole)      243—266 268—275
Laws of Thought, The (Boole), classes of signs      246—256 269
Laws of Thought, The (Boole), derivation of laws of symbols      256—266 275
Laws of Thought, The (Boole), laws of symbols      247—256 269—271
Leibniz, Baron Gottfried von      197—198 215 220
Lines, cutting and not-cutting      70 84
Lines, Euclid’s definition of      16 45—46
Lines, parallel      see “Parallel lines”
Lines, skew      47
Lines, straight      see “Straight lines”
Lobachevski, Nicholas, background of      80
Lobachevski, The Theory of Parallels      68—77
Lobachevski, The Theory of Parallels, analytic geometry and      109
Lobachevski, The Theory of Parallels, angles and triangles      74—77 84—92
Lobachevski, The Theory of Parallels, publication of      80
Lobachevski, The Theory of Parallels, substitutes postulate for Euclid’s Fifth      84
Logic, laws of symbols in Boole      247—256 269—271
Logic, laws of symbols in Boole, derivation of      256—266 275
Logic, mathematics and, in Boole      242 267—268
Logic, mathematics and, in Frege      188
Logic, mathematics and, in Peano      188
Logic, mathematics and, in Russell      188—189 190 194
Logic, symbolic      268 275
Maps, coloring of      217
Marcellus      129
Mathematical induction      165 177—182 190—194
Mathematics, common characteristic of      267
Mecanique Celeste      230—231
Mechanical brains      242
Mersenne, Marin      102
Moebius strip      215—217
Multiplication      150
Non-Euclidean geometry      80
Non-Euclidean geometry of Lobachevski      68—77
Non-Euclidean geometry of Lobachevski, analytic geometry and      109
Non-Euclidean geometry of Lobachevski, angles and triangles      74—77 84—92
Non-Euclidean geometry of Lobachevski, postulate substituted for Euclid’s Fifth      84
Non-Euclidean geometry of Lobachevski, published      80
Non-Euclidean geometry, Riemannian      93 94
Non-Euclidean geometry, which is most suitable?      94—95
Numbers, denned by Euclid      114—115 150
Numbers, denned by Russell      169—176 184—188
Numbers, inductive      182
Numbers, irrational, described by Dedekind’s cut      145—149 152—160
Numbers, irrational, discovered      149
Numbers, natural      150
Numbers, natural, theory of      164—169 176—182 190—194
Numbers, quantity of, in Archimedes      116—126 129—130
Numbers, quantity of, in Euclid      115—116
Numbers, quantity of, in Russell      175—182 190—194
Numbers, rational, compared with points on straight line      141—145 152—158
Numbers, rational, defined      152
Numbers, rational, properties of      140—142
Opposite, reduction to the      128—129
Parallel lines in Euclid’s Elements      44
Parallel lines in Euclid’s Elements, defined      17 47
Parallel lines in Euclid’s Elements, propositions      63—68 80—83
Parallel lines in Lobachevski      84 91—93
Parallel lines in Lobachevski, theorems      70—74
Parallel lines, three possibilities for      94
Parallelograms in Euclid      44
Peano, Giuseppe      183
Peano, number theory of      164—169 179 188
Pheidias      118
Planetary theory in Aristarchus and Archimedes      117—118 131
Planetary theory, Laplace’s work on      230—231
Poincare, Henri      181
Point, defined in Euclid’s Elements      16 45—46
Position, relative      see “Topology”
Posterity of numbers      177—178 180 192—193
Postulates in Descartes      109
Postulates in Euclid’s Elements      17 47—50
Postulates in Euclid’s Elements, lacking in number theory      126—127 (see also “Fifth Postulate of Euclid”)
Postulates, function of, in geometry      52—53
Prime numbers in Euclid, defined      114
Prime numbers in Euclid, quantity of      114—116 127—129
probability      218—241
Probability, a priori vs. a posteriori arguments      233
Probability, defined      224 234 235
Probability, gambler’s fallacy in      238—239
Probability, Laplace on      219—230 233—241
Probability, rules for      224—230 234—241
Probability, truth and      231
Progressions, Peano’s theory and      167
Proofs, , reduction to the opposite      128—129
Proofs, method of superimposition      58
Proofs, reduction to the absurd      60—62 155
Proofs, synthetic vs. analytic method      109—110
Propositions of Euclid      see “Euclid’s Elements of Geometry”
Pseudosphere      93—94
Pythagoras      149 164
Pythagorean theorem of Euclid      108—109
Q.E.F.      53
Rational numbers, compared with points on straight line      141—145 152—158
Rational numbers, defined      152
Rational numbers, properties of      140—142
Reason, derivation of symbols of logic from laws of      256—266 275
Reasonable degree of belief      220 232
Reduction in Russell’s definition of number      188
Reduction to the absurd      60—62 155
Reduction to the opposite      128—129
Relations, signs of, in Boole      252—256
Relations, types of, in Russell      173
Relative position      see “Topology”
Riemann, Bernhard      80
Riemann, geometry of      93 94
Right angles, Euclid’s definition of      16 46—47
Russell, Bertrand, background of      183—184
Russell, finitude and mathematical induction      175—182 190—194
Russell, finitude and mathematical induction, series of rational numbers      161—169
Russell, Introduction to Mathematical Philosophy      161—194
Russell, Introduction to Mathematical Philosophy, definition of number      169—176 184—188
Saccheri, Girolamo, on Euclid’s Fifth Postulate      78—80
Sand Reckoner, The (Archimedes)      116—126 129—137
Schnitt, Dedekind’s      145—149 152—160
Science, object of      256
Sets      see “Classes”
Signs, classes of      246—156 269
Signs, defined      244 (see also “Laws of Thought The”)
Similarity and class      174 185 188
Skew lines      47
Sphere, non-Euclidean geometry and      91—94
Square roots      see “Irrational numbers”
Stadium (Greekmeasure), length of      132
Straight lines in Euclid’s Elements      44 52—57
Straight lines in Euclid’s Elements, defined      16 45—46
Straight lines in Euclid’s Elements, propositions      17—21 26—28
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå