Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Guillemin V., Pollack A. — Differential topology | 196 |
Aleksandrov A.D., Zalgaller V.A. — Intrinsic Geometry of Surfaces | 8—9, 190 |
Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 492 |
Evans L.C. — Partial Differential Equations | 488 |
Gilbert J., Murray M. — Clifford Algebras and Dirac Operators in Harmonic Analysis | 311, 317 |
Olver P.J. — Equivalence, Invariants and Symmetry | 333 |
Eisenhart L.P. — An introduction to differential geometry with use of the tensor calculus | 191 |
Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 7, 167 |
Millman R.S., Parker G.D. — Elements of Differential Geometry | 188 |
Vilenkin A., Shellard E.P.S. — Cosmic strings and other topological defects | 187 |
Lee J.M. — Introduction to Topological Manifolds | 8 |
Gallot S., Hulin D. — Riemannian Geometry | 3.111. |
Ivey Th.A., Landsberg J.M. — Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems | 62 |
Petersen P. — Riemannian Geometry | 101 |
Aleksandrov A.D., Zalgaller V.A. — Intrinsic Geometry of Surfaces | 8—9, 190 |
Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry | 415 |
Ratcliffe J.G. — Foundations of Hyperbolic Manifolds | 390, 528 |
Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 33, 62, 176, 232 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 776 |
Vick J.W. — Homology theory. An introduction to algebraic topology | 207 |
Heusler M., Goddard P. — Black Hole Uniqueness Theorems | 98, 144 |
Chaikin P.M., Lubensky T.C. — Principles of condensed matter physics | 626, 670 |
Arnold V.I., Khesin B.A. — Topological methods in hydrodynamics | 296 |
Gompper G., Schick M. — Self-Assembling Amphiphilic Systems | 133 |
Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2 | 318, 358 |
Morita S. — Geometry of differential forms | 216 |
Singer I.M., Thorpe J.A. — Lecture Notes on Elementary Topology and Geometry | 176 |
Ablowitz M.J., Segur H. — Solitons and the Inverse Scattering Transform | 348 |
Morita Sh. — Geometry of Differential Forms | 216 |
Bleecker D. — Gauge Theory and Variational Principles | 126 |
O'Neill B. — Elementary differential geometry | 380—383, 387(Ex. 8) |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, Manifolds and Physics (vol. 2) | 330 |
Held A. (ed.) — General relativity and gravitation. 100 years after the birth of Albert Einstein (volume 1) | 184, 363, 386 |
Morgan F. — Riemannian geometry, a beginners guide | 65, 67—69,71 |
Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 114, 214 |
Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 401 |
Held A. (ed.) — General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, Vol. 2 | 184, 363, 386 |
Fomenko À.Ò., Mishehenko A.S. — A Short Course in Differential Geometry and Topology | 240 |
Hans-Jürgen Stöckmann — Quantum Chaos: An Introduction | 335, 340 |
Berger M., Cole M. (translator) — Geometry I (Universitext) | 12.7.5.2 |
Birrell N.D., Davies P.C.W. — Quantum Fields in Curved Space | 162 |
Tsvelik A.M. — Quantum field theory in condensed matter physics | 77 |
Rosenfeld B. — Geometry of Lie Groups | 17 |
Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry | 415 |
Nash C. — Differential Topology and Quantum Field Theory | 104, 134, 152, 163 |
Fuchs D., Tabachnikov S. — Mathematical omnibus: Thirty lectures on classical mathematics | 282, 288 |
Moerdijk I., Reyes G.E. — Models for smooth infinitesimal analysis | 213 |
Morita S. — Geometry of Differential Forms | 216 |
Spivak M. — A Comprehensive Introduction to Differential Geometry. Volume 3 | 400 |
Prasolov V.V., Tikhomirov V.M. — Geometry | 145 |
Tsvelik A.M. — Quantum field theory in condensed matter physics | 77 |
Kentaro Yano — Integral Formulas in Riemannian Geometry | 16 |
Chaikin P., Lubensky T. — Principles of condensed matter physics | 626, 670 |
Hsiung C.-C. — A first course in differential geometry | 256 |
Candel A., Conlon L. — Foliations I | 148, 331 |
Lemm J.M. — Mathematical elasticity. Theory of shells | 83, 133 |
Ivey T.A., Landsberg J.M. — Cartan for beginners: differential geometry via moving frames exterior differential systems | 62 |
Frankel T. — The geometry of physics: an introduction | 215, 323, 462 |
Mineev V.P. — Topologically stable defects and solutions in ordered media | 66 |
Sattler K.D. — Handbook of Nanophysics: Functional Nanomaterials | 16-8 |
Penrose R., Rindler W. — Spinors and space-time. Spinor and twistor methods in space-time geometry | 27 |
Casson A.J., Bleiler S.A. — Automorphisms of surfaces after Nielsen and Thurston | 9 |
Stillwell J. — Mathematics and its history | 247—250, 258, 297—302, 306 |
Milnor J.W., Stasheff J.D. — Characteristic Classes. (Am-76), Vol. 76 | 303ff, 310f |
Yano K. — Integral Formulas in Riemannian Geometry | 16 |
Frankel T. — The geometry of physics: An introduction | 215, 323, 462
Gauss — Bonnet theorem as an index theorem |
Klingenberg W. — A Course in Differential Geometry (Graduate Texts in Mathematics) | 138—144 |
Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 136 |
Rosenberg S. — The Laplacian on a Riemannian manifold | 56, 111 |
Nash C., Sen S. — Topology and geometry for physicists | 140, 223—225 |
Morita S. — Geometry of Differential Forms (Translations of Mathematical Monographs, Vol. 201) | 216 |
Jost J. — Bosonic Strings: A mathematical treatment | 28 |