Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Sattler K.D. — Handbook of Nanophysics: Functional Nanomaterials
Sattler K.D. — Handbook of Nanophysics: Functional Nanomaterials

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Handbook of Nanophysics: Functional Nanomaterials

Автор: Sattler K.D.

Аннотация:

Handbook of Nanophysics: Functional Nanomaterials illustrates the importance of tailoring nanomaterials to achieve desired functions in applications. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume covers various composites, including carbon nanotube/polymer composites, printable metal nanoparticle inks, polymer�clay nanocomposites, biofunctionalized titanium dioxide-based nanocomposites, nanocolorants, ferroic nanocomposites, and smart composite systems. It also describes nanoporous materials, a giant nanomembrane, graphitic foams, arrayed nanoporous silicon pillars, nanoporous anodic oxides, metal oxide nanohole arrays, carbon clathrates, self-assembled monolayers, epitaxial graphene, and graphene nanoribbons, nanostructures, quantum dots, and cones. After focusing on the methods of nanoindentation and self-patterning, the book discusses nanosensors, nano-oscillators, and hydrogen storage. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2011

Количество страниц: 790

Добавлена в каталог: 12.07.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$C_{60}$-single-walled carbon nanotube, interaction energy, acceptance energy      36-5 thru 36-6
$C_{60}$-single-walled carbon nanotube, interaction energy, potential energy      36-4
$C_{60}$-single-walled carbon nanotube, interaction energy, suction energy      36-6
$C_{60}$-single-walled carbon nanotube, interaction energy, van der Waals interaction force      36-4 thru 36-5
$C_{60}$-single-walled carbon nanotube, oscillatory behavior, oscillatory frequency variation      36-8
$C_{60}$-single-walled carbon nanotube, oscillatory behavior, suction energy and velocity      36-6 thru 36-7
$C_{60}$-single-walled carbon nanotube, oscillatory behavior, total van der Waals interaction force      36-7
$Q_{Air}$ contribution      35-6
$Q_{Anchor}$ contribution      35-6 thru 35-7
$Q_{Surface}$ contribution      35-7
$Q_{TED}$ contribution      35-7
$sp^2$ bonds      19-1
Ab initio modeling      40-12 thru 40-14
Acceptance energy      36-3 thru 36-4
Acid and acridine dyes      5-2
Acrylate-zirconia nanomembrane      11-5
Activated carbon (AC)      41-8 thru 41-10 42-4
Adaptive filtered-x algorithm with multireferences and multichannels (AFAMRMC), active vibration and noise control      8-13
Adaptive filtered-x algorithm with multireferences and multichannels (AFAMRMC), adaptive control      8-16 thru 8-17
Adaptive filtered-x algorithm with multireferences and multichannels (AFAMRMC), AISU      8-15 thru 8-16
Adaptive filtered-x algorithm with multireferences and multichannels (AFAMRMC), FIR filters      8-14
Adaptive filtered-x algorithm with multireferences and multichannels (AFAMRMC), steepest descent method      8-15
Adaptive fuzzy logic control (AFLC), adaptive input scaling      8-5 thru 8-6
Adaptive fuzzy logic control (AFLC), dead zone compensator      8-5 thru 8-6
Adaptive fuzzy logic control (AFLC), definition      8-5
Adaptive fuzzy logic control (AFLC), motor positioning error and linearity      8-6
Adaptive fuzzy logic control (AFLC), positive and negative motion direction      8-7
Adaptive fuzzy logic control (AFLC), velocity vs. input      8-6 thru 8-7
Adaptive input shaping unit (AISU)      8-15 thru 8-20
Adatoms      31-3
Adsorbate-induced surface self-patterning, flatland patterning, Ge/Ga:Si(111), domain shape      31-10 thru 31-11
Adsorbate-induced surface self-patterning, flatland patterning, Ge/Ga:Si(111), Ge nanoislands      31-9 thru 31-10
Adsorbate-induced surface self-patterning, flatland patterning, Ge/Ga:Si(111), LEEM images      31-8
Adsorbate-induced surface self-patterning, flatland patterning, Ge/Ga:Si(111), surface structure and morphology      31-8 thru 31-9
Adsorbate-induced surface self-patterning, self-created ridges, Ga/Si(113), Ga saturation      31-12 thru 31-13
Adsorbate-induced surface self-patterning, self-created ridges, Ga/Si(113), LEED analysis, surface facets      31-11 thru 31-12
Adsorbate-induced surface self-patterning, self-created ridges, Ga/Si(113), surface kinetics      31-13 thru 31-14
Adsorbate-induced surface self-patterning, self-created ridges, Ga/Si(113), surface morphology      31-13
Adsorbate-induced surface self-patterning, self-created ridges, Ga/Si(113), surface reconstruction      31-11
Adsorption isotherms, hysteresis loop      9-8
Adsorption isotherms, IUPAC classification      9-5 9-7
Adsorption isotherms, Type I isotherm      9-5
Adsorption isotherms, Type II isotherm      9-5 thru 9-6
Adsorption isotherms, Type III isotherm      9-6
Adsorption isotherms, Type IV isotherm      9-7
Adsorption isotherms, Type V isotherm      9-7
Adsorption isotherms, Type VI isotherm      9-8
Adsorption isotherms, volumetric and gravimetric adsorption      9-5 9-7
Adsorption-based hydrogen storage systems      42-8 thru 42-9
AFLC      see "Adaptive fuzzy logic control"
Ag/Si-NPA, adenine detection, electromagnetic field enhancement      13-13
Ag/Si-NPA, adenine detection, first-order optical phonon scattering      13-11
Ag/Si-NPA, adenine detection, localized surface plasmons (LSPs)      13-13
Ag/Si-NPA, adenine detection, metal species      13-12
Ag/Si-NPA, adenine detection, Raman spectra      13-11 thru 13-12
Ag/Si-NPA, adenine detection, SERS spectrum      13-12
Ag/Si-NPA, adenine detection, water solutions      13-10
Ag/Si-NPA, preparation and characterization      13-10 thru 13-11
Ag/Si-NPA, SERS detection stability      13-13 thru 13-14
Aharanov — Bohm effect      25-13
Allan variance      37-8 thru 37-9
Anax parthenope julius      29-3 thru 29-5
Anisotropy energy      38-7 thru 38-8
Anodic alumina mask, anodic porous alumina, electrochemical etching      28-6 thru 28-7
Anodic alumina mask, anodic porous alumina, geometrical cell model      28-2
Anodic alumina mask, Si substrate, Al anodization      28-2 thru 28-4
Anodic alumina mask, Si substrate, nanopatterning      28-1 thru 28-2
Anodic alumina mask, Si substrate, pattern transfer      28-4
Anodic alumina mask, silicon nanocolumn arrays, AFM image      28-5 thru 28-6
Anodic alumina mask, silicon nanocolumn arrays, wet-chemical etching      28-4 thru 28-5
Anodization, current density-time curve      28-2 thru 28-3
Anodization, patterning process      28-5
Anodization, SEM images      28-3
Anodization, SPM lithography      28-4
Anthraquinone and arylmethane dyes      5-3
Appell’s hypergeometric functions      36-15 thru 36-16
Armchair nanoribbons, atomic structure      20-3
Armchair nanoribbons, Brillouin zone      20-4
Armchair nanoribbons, Dirac equation      20-6 thru 20-7
Armchair nanoribbons, electron-electron interactions      20-7
Atomic-like discrete energy level      34-2
Auger electron spectroscopy (AES)      17-5
Auxiliary organic macromolecules      10-4
Azin dyes      5-4
Azo dyes      5-2 thru 5-3
Back-gated SWNT FET      24-2
Bernal stacking      19-1 19-5
Bessel functions      23-8 thru 23-10
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-antibody nanocomposites, $TiO_2$-CD4 nanocomposites      4-22
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-antibody nanocomposites, $TiO_2$-CD8/$TiO_2$-CD3      4-24
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-antibody nanocomposites, electron transfer      4-24
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-antibody nanocomposites, epidermal and Langerhans cells      4-22
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-antibody nanocomposites, fluorescently tagged anti-mouse antibody      4-22 thru 4-23
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-antibody nanocomposites, nanoconjugates      4-24 thru 4-25
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-antibody nanocomposites, photo-catalytic nanoparticles      4-21
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-antibody nanocomposites, protein/peptide binding      4-20
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-antibody nanocomposites, psoriasis      4-21 thru 4-22
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-antibody nanocomposites, silver nitrate experiment      4-22 thru 4-23
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-antibody nanocomposites, substantial total cell lysis      4-25
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-antibody nanocomposites, T-cell markers      4-21 thru 4-22
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, $TiO_2$-R18Ss oligonucleotide      4-20
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, $^{32}P$ radioactivity      4-20 thru 4-21
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, adiabatic ionization potential      4-10
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, attenuation coefficient      4-14 thru 4-15
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, CdT oxidation      4-10 thru 4-11
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, charge transfer      4-12
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, EPR signal      4-9 thru 4-10
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, hole trapping process      4-10 thru 4-11
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, intrinsic photocatalytic capacity      4-18
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, molecular recognition      4-8
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, multi-step electron transfer      4-12
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, nanocrystalline metal-oxide semiconductor      4-9
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, oligonucleotide hybridization      4-8 thru 4-9
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, photocatalytic deposition      4-16
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, photogenerated holes      4-20
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, polymerase chain reaction (PCR)      4-19
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, quantum efficiency      4-14
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, radiolabeled complementary oligonucleotides      4-20
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, random walk model      4-15
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, silver ions      4-11
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, standard transfection method      4-19
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, thermal mobility      4-12
Biofunctionalized $TiO_2$-based nanocomposites, $TiO_2$-DNA nanocomposites, twenty base-pair oligonucleotides      4-13
Biofunctionalized $TiO_2$-based nanocomposites, DNA oligonucleotides and protein systems      4-8
Biofunctionalized $TiO_2$-based nanocomposites, hybrid materials      4-1
Biofunctionalized $TiO_2$-based nanocomposites, reactive oxygenated specie production      4-26
Biofunctionalized $TiO_2$-based nanocomposites, redox active centers, bio-inorganic interface      4-2
Biofunctionalized $TiO_2$-based nanocomposites, redox active centers, EPR and charge separation      4-3 thru 4-4
Biofunctionalized $TiO_2$-based nanocomposites, redox active centers, metal-oxide nanoparticles      4-2 thru 4-3
Biofunctionalized $TiO_2$-based nanocomposites, redox active centers, particle shape control      4-5
Biofunctionalized $TiO_2$-based nanocomposites, redox active centers, particle size and shape effects      4-5 thru 4-7
Biofunctionalized $TiO_2$-based nanocomposites, redox active centers, semiconductor particles      4-1
Biofunctionalized $TiO_2$-based nanocomposites, redox active centers, trapping sites      4-7 thru 4-8
Biofunctionalized $TiO_2$-based nanocomposites, site-selective DNA cleavage, conductive linker      4-17
Biofunctionalized $TiO_2$-based nanocomposites, site-selective DNA cleavage, gold nanoparticles      4-16
Biofunctionalized $TiO_2$-based nanocomposites, site-selective DNA cleavage, rare cutters      4-18
Biofunctionalized $TiO_2$-based nanocomposites, site-selective DNA cleavage, semiconductor DNA " scissors"      4-18 4-25
Biofunctionalized $TiO_2$-based nanocomposites, site-selective DNA cleavage, sequence-specific restriction enzyme      4-18 thru 4-19
Biofunctionalized $TiO_2$-based nanocomposites, site-selective DNA cleavage, thermodynamic traps      4-17
Biofunctionalized $TiO_2$-based nanocomposites, site-selective DNA cleavage, topographical AFM image      4-17 thru 4-18
Biomarker      33-10 thru 33-11
Bloch waves      25-6
Born — Openheimer approximation      25-5
Brillouin zone      18-12 18-17
Bruggeman EMA      2-15
Brunauer — Emmett — Taylor (BET) equation      9-8
Brust — Schiffrin method      2-17 2-20
Carbide-derived carbons (CDCs)      41-10 thru 41-12
Carbon foams, macro and micro structural level      12-1
Carbon foams, macro-networks      12-11 thru 12-13
Carbon foams, mesophase pitch-based carbon foams      12-2
Carbon foams, precursor      12-1 thru 12-2
Carbon foams, quasi-regular structures      12-3
Carbon foams, random network structures      12-2 thru 12-3
Carbon foams, saccharose-based carbon nanofoams      12-2
Carbon foams, structural and vibrational properties, $I_D/I_C$ ratio      12-8
Carbon foams, structural and vibrational properties, characteristic Raman spectra      12-5 thru 12-6
Carbon foams, structural and vibrational properties, D and G' band      12-8
Carbon foams, structural and vibrational properties, G' band intensity ratio      12-5 thru 12-6
Carbon foams, structural and vibrational properties, HOPG      12-4
Carbon foams, structural and vibrational properties, laser excitation energy      see "Laser excitation energy"
Carbon foams, structural and vibrational properties, optical and magnification image      12-5 thru 12-6
Carbon foams, structural and vibrational properties, Raman spectroscopy      12-3 thru 12-4
Carbon foams, structural and vibrational properties, skewness      12-7
Carbon foams, structural and vibrational properties, Stokes process      12-4
Carbon nanotube/polymer composites, adhesion, AFM topography imaging      1-3
Carbon nanotube/polymer composites, adhesion, noncontinuous reinforcing phase      1-2
Carbon nanotube/polymer composites, adhesion, pullout force      1-3
Carbon nanotube/polymer composites, adhesion, wetting process      1-1
Carbon nanotube/polymer composites, adhesion, Wilhelmy balance technique      1-2
Carbon nanotube/polymer composites, dispersion methods in situ polymerization      1-6
Carbon nanotube/polymer composites, dispersion methods, chemical functionalization      1-5
Carbon nanotube/polymer composites, dispersion methods, covalent method      1-5
Carbon nanotube/polymer composites, dispersion methods, melt compounding      1-3 thru 1-4
Carbon nanotube/polymer composites, dispersion methods, milling and grinding      1-4
Carbon nanotube/polymer composites, dispersion methods, noncovalent method      1-5 thru 1-6
Carbon nanotube/polymer composites, dispersion methods, ultrasonication process      1-4
Carbon nanotube/polymer composites, electrical properties, isotropic polymer composites      1-9 thru 1-10
Carbon nanotube/polymer composites, electrical properties, oriented polymer composites      1-10 thru 1-11
Carbon nanotube/polymer composites, electrical properties, percolation threshold modeling      1-11 thru 1-12
Carbon nanotube/polymer composites, mechanical properties, composite strength      1-8
Carbon nanotube/polymer composites, mechanical properties, composite tensile modulus      1-7 thru 1-8
Carbon nanotube/polymer composites, mechanical properties, modulus reinforcement      1-7
Carbon nanotube/polymer composites, mechanical properties, strength and toughness potential      1-6 thru 1-7
Carbon nanotube/polymer composites, mechanical properties, stress-strain curves      1-8 thru 1-9
Carbon nanotube/polymer composites, mechanical reinforcement      1-1
Carbon nanotube/polymer composites, sensing properties      1-12 thru 1-13
Carbon nanotube/polymer composites, thermal stability      1-13
Carbon nanotubes in nano-bundles, interaction energy      36-12 thru 36-13
Carbon nanotubes in nano-bundles, limitations      36-13 thru 36-14
Carbon nanotubes in nano-bundles, molecular dynamics study      36-14
Carbon nanotubes in nano-bundles, suction energy      36-13
Carbon nanotubes in nano-bundles, surface point      36-12
Carbon nanotubes in nano-bundles, van der Waals force      36-13
Carbon nanotubes, hydrogen storage      40-15
Carbon nanotubes, schematic diagram      40-14
Carbon nanotubes, single-wall vs. multi-wall      40-15
Carbon nanotubes, structure      40-14
CdS/Si nanoheterojunction array, electrical properties      13-19 thru 13-20
CdS/Si nanoheterojunction array, preparation and characterization, FE-SEM images      13-17
CdS/Si nanoheterojunction array, preparation and characterization, heterogeneous reaction process      13-16
CdS/Si nanoheterojunction array, preparation and characterization, HRTEM images      13-17 thru 13-18
CdS/Si nanoheterojunction array, preparation and characterization, two-dimensional fast Fourier transform mode      13-17
CdS/Si nanoheterojunction array, preparation and characterization, XRD spectra      13-16 thru 13-17
CdS/Si nanoheterojunction array, semiconductor nanoheterostructures      13-16
CdS/Si nanoheterojunction array, three-primary-color photoluminescence      13-18 thru 13-19
Charge-based writing      30-8 thru 30-10
Chemical vapor deposition (CVD)      18-2 thru 18-3
Chemisorption      31-2 31-3 41-4
Clar’s goblet      22-5
CNT-$SiO_2$/Si system      24-2
Cobalt ferrite (CFO)      6-3
Coefficient of friction      27-6 thru 27-8
Colloidal crystal templating, silicon column arrays formation      28-7 thru 28-9
Colloidal crystal templating, silicon hole arrays formation      28-9 thru 28-10
Colloidal QDs      34-1
Conductive scanning force microscopy (C-SFM)      17-4
Coprecipitation method      32-6 thru 32-8
Copris ochus      29-2 thru 29-4 29-6 29-9
Coriolis force      35-18
Cross-linkable acrylate monomers      11-3
Cross-sectional transmission electron microscopy (XTEM) image      34-6
Cyanine/phthalocyanine dyes      5-3
Dark current density      34-4
Dead zone      8-5 thru 8-7
Density functional theory (DFT), armchair and zigzag nanoribbons      20-7
Density functional theory (DFT), graphene cones      25-6 thru 25-7 25-14
Density functional theory (DFT), graphene-gas molecule interactions      24-4 thru 24-5
DFT      see "Density functional theory"
Diazonium dyes      5-3
Differential scanning calorimetry (DSC)      3-8 thru 3-9
Digital textile printing (DTP) system      5-15
Dihydrogen-encapsulated fullerenes      39-3 thru 39-4
Dimer-adatom-stacking fault model (DAS)      31-3
Dip-pen nanolithography (DPN), biosensor      30-13
Dip-pen nanolithography (DPN), Dip-pen nanolithography (DPN), ATM      30-4
Dip-pen nanolithography (DPN), magnetic nanoparticles      30-5
Dip-pen nanolithography (DPN), manganese ferrite nanostructures      30-14
Dip-pen nanolithography (DPN), MHA writing      30-4 thru 30-5
Dip-pen nanolithography (DPN), nanoparticle reposition, SPM      30-4
Dip-pen nanolithography (DPN), nanoshaving      30-8
Dip-pen nanolithography (DPN), quantum dots      30-5
Dip-pen nanolithography (DPN), spot size      30-5 thru 30-6
Dip-pen nanolithography (DPN), stylus and ink      30-4
Dip-pen nanolithography (DPN), writing time and feature size      30-5
Dirac cones      19-5 19-8
Dirac energy      18-10
Dirac equation      20-2
Dirac equation, armchair nanoribbons      20-6 thru 20-7
Dirac equation, low-energy Schroedinger equations      20-5
Dirac equation, wavefunction      20-5
Dirac equation, zigzag nanoribbons      20-5 thru 20-6
Dirac — Weyl Hamiltonian      21-2
Direct/substantive dyeing      5-2
Disperse dyes      5-2
Dissipation-induced amplitude noise      37-8
Dissociative chemisorption      41-4
Double-walled carbon nanotubes, interaction energy, $K^\star_n$ and $L_n^\star$ evaluation      36-9 thru 36-10
Double-walled carbon nanotubes, interaction energy, force distribution      36-10
Double-walled carbon nanotubes, interaction energy, integrals, concentric nanocylinders      36-8 thru 36-9
Double-walled carbon nanotubes, interaction energy, total potential energy      36-8 36-10
Double-walled carbon nanotubes, oscillatory behavior, extrusion distance, inner tube      36-10
Double-walled carbon nanotubes, oscillatory behavior, oscillation frequency      36-11
Double-walled carbon nanotubes, oscillatory behavior, van der Waals force      36-10 thru 36-11
Doubly clamped flexural resonators, cantilevered beams      37-5
Doubly clamped flexural resonators, dissipation, pressure      37-5
Doubly clamped flexural resonators, dissipation, resonator thickness      37-6
Doubly clamped flexural resonators, dissipation, stress and strain variations      37-5 thru 37-6
Doubly clamped flexural resonators, dissipation, temperature      37-5
Doubly clamped flexural resonators, driven damped beams, harmonic driving force      37-6 thru 37-7
Doubly clamped flexural resonators, driven damped beams, noise      37-7 thru 37-9
Doubly clamped flexural resonators, driven damped beams, response function      37-7
Doubly clamped flexural resonators, generic structure      37-2
Doubly clamped flexural resonators, lowest frequency modes      37-3 thru 37-4
Doubly clamped flexural resonators, material properties      37-3
Doubly clamped flexural resonators, resonance frequencies      37-4
DPN      see "Dip-pen nanolithography"
Dragonfly      see "Anax parthenope julius"
Dung beetle      see "Copris ochus"
Dyson equation      20-10 20-19
E-beam lithography      30-6 thru 30-7
Effective mass theory (EMT)      25-8 25-12
Elasticity theory of continuum mechanics, beam resonator      35-3
Elasticity theory of continuum mechanics, definition      35-3
Elasticity theory of continuum mechanics, doubly clamped suspended beam      35-3 thru 35-4
Elasticity theory of continuum mechanics, equations of motion      35-4
Elasticity theory of continuum mechanics, free beam      35-4
Elasticity theory of continuum mechanics, resonance frequencies, nanomechanical resonators      35-4 thru 35-6
Elasticity theory of continuum mechanics, singly clamped beam      35-4
Electrical Johnson noise      35-7 thru 35-8
Electro-hole pairs (EHP)      34-6 thru 34-7
Electrochemical etching      28-6 thru 28-7
Electrochemical impedance spectroscopy (EIS)      14-12
Electroless plating      28-8
Electron capture process      34-5
Electron density of states (e-DOS)      16-13 thru 16-14
Electron paramagnetic resonance (EPR)      4-3 thru 4-4
Electron trapping, interference, density of states      23-11
Electron trapping, interference, energy eigenvalue equation      23-9
Electron trapping, interference, energy spectra      23-11
1 2 3 4 5 6
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2017
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте