Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Sattler K.D. — Handbook of Nanophysics: Functional Nanomaterials
Sattler K.D. — Handbook of Nanophysics: Functional Nanomaterials



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Handbook of Nanophysics: Functional Nanomaterials

Автор: Sattler K.D.

Аннотация:

Handbook of Nanophysics: Functional Nanomaterials illustrates the importance of tailoring nanomaterials to achieve desired functions in applications. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume covers various composites, including carbon nanotube/polymer composites, printable metal nanoparticle inks, polymer�clay nanocomposites, biofunctionalized titanium dioxide-based nanocomposites, nanocolorants, ferroic nanocomposites, and smart composite systems. It also describes nanoporous materials, a giant nanomembrane, graphitic foams, arrayed nanoporous silicon pillars, nanoporous anodic oxides, metal oxide nanohole arrays, carbon clathrates, self-assembled monolayers, epitaxial graphene, and graphene nanoribbons, nanostructures, quantum dots, and cones. After focusing on the methods of nanoindentation and self-patterning, the book discusses nanosensors, nano-oscillators, and hydrogen storage. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2011

Количество страниц: 790

Добавлена в каталог: 12.07.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Optochemical nanosensors, design using nanoparticle, titania nanoparticle sensor      33-6
Optochemical nanosensors, intracellular measurement      33-11
Optochemical nanosensors, laboratory assay      33-10 thru 33-11
Optochemical nanosensors, live cells      33-7 thru 33-8
Optochemical nanosensors, nanoparticle      33-3
Optochemical nanosensors, optical fibers      33-1
Optochemical nanosensors, performance      33-1 33-2
Optochemical nanosensors, schematic diagram      33-4
Optochemical nanosensors, sensing component, analyte-sensitive molecular probe      33-3
Optochemical nanosensors, sensing component, fluorescence      33-3 thru 33-4
Optochemical nanosensors, sensing component, LSPR      33-4
Optochemical nanosensors, sensing component, SERS      33-4
Optochemical nanosensors, toxicity and/or bioelimination      33-11
Ordered mesoporous materials, fundamental characteristics      10-1 thru 10-2
Ordered mesoporous materials, influence factors      10-9
Ordered mesoporous materials, inorganic-organic interaction      10-7 thru 10-8
Ordered mesoporous materials, MCM series      10-9 thru 10-10
Ordered mesoporous materials, non-silica-based mesoporous materials      10-10
Ordered mesoporous materials, ordered mesoporous films      10-10 thru 10-11
Ordered mesoporous materials, structure      10-2 thru 10-3
Ordered mesoporous materials, surfactant interaction      10-8 thru 10-9
Ordered mesoporous materials, synthesizing mechanism, auxiliary organic macromolecules      10-4
Ordered mesoporous materials, synthesizing mechanism, cooperative organization mechanism      10-5 thru 10-6
Ordered mesoporous materials, synthesizing mechanism, inorganic monomer molecule      10-3
Ordered mesoporous materials, synthesizing mechanism, liquid crystal templating (LCT) mechanism      10-3 10-5
Ordered mesoporous materials, synthesizing mechanism, MCM-41 formation      10-3 thru 10-4
Ordered mesoporous materials, synthesizing mechanism, silicate rod assembly mechanism      10-5
Ordered mesoporous materials, synthesizing mechanism, silicatropic liquid crystals’ mechanism      10-5 thru 10-6
Ordered mesoporous materials, transition-metal oxide      10-10
Oriented polymer composites      1-10 thru 1-11
Oxazin and oxazone dyes      5-4
Partially occupied molecular orbital (POMO)      24-6
Pawlow equation      2-8
PCNs      see "Polymer-clay nanocomposites"
Percolation threshold modeling      1-11 thru 1-12
Phonon bottleneck effect      34-2
Phonon density of states (p — DOS)      16-14 thru 16-15
Photoemission electron microscopy (PEEM)      31-7
photolithography      30-7 thru 30-8
Photoluminescence (PL)      34-6 thru 34-7
Photoluminescence (PL), band-band recombination process      13-5
Photoluminescence (PL), Gauss — Newton method      13-5
Photoluminescence (PL), PL excitation (PLE) spectra      13-5 13-7
Photoluminescence (PL), QC/luminescence center (QCLC) model      13-6
Photoluminescence (PL), quantum confinement (QC) model      13-5 thru 13-6
Photoluminescence (PL), spectra      13-5 thru 13-6
Photonic explorer for biomedical use with biologically localized embedding (PEBBLE) sensor      33-2 33-7
Physisorption      31-2 41-2 42-3
Physisorption vs. chemisorption      41-4 42-3
Physisorption, hydrogen adsorption, adsorbed density      42-4
Physisorption, hydrogen adsorption, adsorbed volume      42-3 thru 42-4
Physisorption, hydrogen adsorption, adsorption vs. desorption      42-3
Physisorption, hydrogen adsorption, differential enthalpy      42-4
Physisorption, hydrogen adsorption, supercritical and subcritical adsorption      42-3
Physisorption, hydrogen physisorption at nanoscale, GCMC simulations      41-6
Physisorption, hydrogen physisorption at nanoscale, gravimetric capacity      41-6 thru 41-7
Physisorption, hydrogen physisorption at nanoscale, Lennard — Jones interactions      41-5 thru 41-6
Physisorption, hydrogen physisorption at nanoscale, pore size distribution      41-6
Physisorption, hydrogen-surface interaction      41-4
Physisorption, specific pore volume      41-5
Physisorption, specific surface area      41-4 thru 41-5
Pi orbital vector analysis (POAV)      16-8
Piezoelectric force microscopy (PFM)      7-1 thru 7-2
Piezoelectric technique, admittance      35-14
Piezoelectric technique, applications      35-17
Piezoelectric technique, detection electrode      35-14
Piezoelectric technique, doubly clamped piezoelectric beam      35-15 thru 35-17
Piezoelectric technique, electromechanical coupling coefficient      35-14
Piezoelectric technique, equivalent electrical RLC circuit      35-15
Piezoelectric technique, free piezoelectric block      35-14 thru 35-15
Piezoelectric technique, strain      35-13
Piezoelectric technique, two-port piezoelectric bulk resonator      35-13 thru 35-14
PL      see "Photoluminescence"
Polymer-clay nanocomposites (PCNs), Bakelite      3-1
Polymer-clay nanocomposites (PCNs), barrier properties      3-11
Polymer-clay nanocomposites (PCNs), biodegradability      3-12
Polymer-clay nanocomposites (PCNs), chemical resistance      3-12
Polymer-clay nanocomposites (PCNs), classification      3-5
Polymer-clay nanocomposites (PCNs), clay minerals, surface modification      3-4
Polymer-clay nanocomposites (PCNs), clay minerals, types and structures      3-2 thru 3-4
Polymer-clay nanocomposites (PCNs), composite material      3-1
Polymer-clay nanocomposites (PCNs), computer-based simulation techniques      3-9 thru 3-10
Polymer-clay nanocomposites (PCNs), drug delivery      3-13
Polymer-clay nanocomposites (PCNs), DSC      3-8 thru 3-9
Polymer-clay nanocomposites (PCNs), flame retardancy      3-12
Polymer-clay nanocomposites (PCNs), mechanical properties      3-11
Polymer-clay nanocomposites (PCNs), nuclear magnetic resonance      3-7 thru 3-8
Polymer-clay nanocomposites (PCNs), Nylon6-clay      3-2
Polymer-clay nanocomposites (PCNs), optical properties      3-12 thru 3-13
Polymer-clay nanocomposites (PCNs), preparation methods in situ intercalative polymerization method      3-6
Polymer-clay nanocomposites (PCNs), preparation methods, melt intercalation method      3-6 thru 3-7
Polymer-clay nanocomposites (PCNs), preparation methods, polymer intercalation      3-5 thru 3-6
Polymer-clay nanocomposites (PCNs), preparation methods, thermoset and thermoplastic polymers      3-7
Polymer-clay nanocomposites (PCNs), rheology modifiers      3-13
Polymer-clay nanocomposites (PCNs), TEM      3-7
Polymer-clay nanocomposites (PCNs), thermal stability and heat distortion temperature      3-11 thru 3-12
Polymer-clay nanocomposites (PCNs), wastewater treatment      3-14
Polymer-clay nanocomposites (PCNs), WAXD      3-7
Pore-filling      14-10 thru 14-11
Pre-amplifier and resonance noise      35-8
Printable metal nanoparticle inks, contracted random loose packing model, compact shell model      2-6 thru 2-7
Printable metal nanoparticle inks, contracted random loose packing model, dispersant shell volatilization      2-6
Printable metal nanoparticle inks, contracted random loose packing model, fee and sc structures      2-5 thru 2-6
Printable metal nanoparticle inks, contracted random loose packing model, hardness and Young’s modulus      2-4
Printable metal nanoparticle inks, contracted random loose packing model, nanocrystalline morphology      2-7
Printable metal nanoparticle inks, contracted random loose packing model, nominal van der Waals contact      2-4
Printable metal nanoparticle inks, contracted random loose packing model, rep and rip structures      2-5
Printable metal nanoparticle inks, contracted random loose packing model, SAM dispersants      2-6 thru 2-7
Printable metal nanoparticle inks, inkjet printing, droplet formation and deposition      2-21 thru 2-22
Printable metal nanoparticle inks, inkjet printing, surface tension effect      2-20 thru 2-21
Printable metal nanoparticle inks, insulator-to-metal transformation, differential scanning calorimetry      2-12 thru 2-13
Printable metal nanoparticle inks, insulator-to-metal transformation, optical spectroscopy      2-11
Printable metal nanoparticle inks, insulator-to-metal transformation, sparse shells      2-13
Printable metal nanoparticle inks, insulator-to-metal transformation, strong ligand-shell effect      2-13
Printable metal nanoparticle inks, insulator-to-metal transformation, transformation temperature ($T_P$)      2-10 thru 2-11
Printable metal nanoparticle inks, insulator-to-metal transformation, vibrational spectroscopy, ligand shell      2-12
Printable metal nanoparticle inks, matrix dilution effect      2-7 thru 2-8
Printable metal nanoparticle inks, nanometal vs. ECA characteristics      2-3
Printable metal nanoparticle inks, nanoparticle core size      2-8
Printable metal nanoparticle inks, optical plasmon resonance, dilute spectra, dielectric medium      2-15 thru 2-17
Printable metal nanoparticle inks, optical plasmon resonance, dipole theory      2-14 thru 2-15
Printable metal nanoparticle inks, optical plasmon resonance, thin film spectra      2-17
Printable metal nanoparticle inks, printable electronics      2-1 thru 2-2
Printable metal nanoparticle inks, printable metal systems      2-2 thru 2-3
Printable metal nanoparticle inks, solution-phase preparation, gold nanoparticles      2-17 thru 2-20
Printable metal nanoparticle inks, solution-phase preparation, phase-transfer Brust — Schiffrin method      2-17
Printable metal nanoparticle inks, solution-phase preparation, Pt and Pd nanoparticles      2-20
Printable metal nanoparticle inks, solution-phase preparation, silver nanoparticles      2-17
Printable metal nanoparticle inks, spherical approximation      2-4
Printable metal nanoparticle inks, thermodynamic size-dependent melting temperature, conductivity vs. heat-treatment temperature      2-10
Printable metal nanoparticle inks, thermodynamic size-dependent melting temperature, Hanszen — Wronski equation      2-8
Printable metal nanoparticle inks, thermodynamic size-dependent melting temperature, nanoparticle core diameter      2-9
Printable metal nanoparticle inks, thermodynamic size-dependent melting temperature, Pawlow equation      2-8
Printable metal nanoparticle inks, thermodynamic size-dependent melting temperature, Sambles equation      2-9
Printable metal nanoparticle inks, thermodynamic size-dependent melting temperature, size-dependent melting enthalpy      2-10
Pt and Pd nanoparticles      2-20
Pyronin dyes      5-4
Qantum dot (QD) sensors      33-6
QDIPs      see "Quantum dot infrared photodetectors"
Quality factor      35-3
Quantum dot infrared photodetectors (QDIPs), dark current and noise current measurement      34-9 thru 34-10
Quantum dot infrared photodetectors (QDIPs), detection spectrum      34-8 thru 34-9
Quantum dot infrared photodetectors (QDIPs), fabrication      34-7 thru 34-8
Quantum dot infrared photodetectors (QDIPs), focal plane array development and characterization, $320\times 256$ focal plane array fabrication      34-11
Quantum dot infrared photodetectors (QDIPs), focal plane array development and characterization, $NE\Delta T$      34-13
Quantum dot infrared photodetectors (QDIPs), focal plane array development and characterization, cross-talk measurement      34-13 thru 34-14
Quantum dot infrared photodetectors (QDIPs), focal plane array development and characterization, flip-chip bonding hybridization process      34-12
Quantum dot infrared photodetectors (QDIPs), focal plane array development and characterization, ROIC chips      34-11
Quantum dot infrared photodetectors (QDIPs), focal plane array development and characterization, sensitivity      34-13
Quantum dot infrared photodetectors (QDIPs), focal plane array development and characterization, thermal and fully packaged FPA image      34-12
Quantum dot infrared photodetectors (QDIPs), photoconductive gain and photoresponsivity measurement      34-10 thru 34-11
Quantum dot infrared photodetectors (QDIPs), photodetectivity (D-) calculation      34-10 thru 34-11
Quantum dot infrared photodetectors (QDIPs), QD growth and characterization      34-6 thru 34-7
Quantum dot infrared photodetectors (QDIPs), QD properties, conduction band      34-1 thru 34-2
Quantum dot infrared photodetectors (QDIPs), QD properties, DOS      34-2
Quantum dot infrared photodetectors (QDIPs), QD properties, interaction Hamiltonian      34-3
Quantum dot infrared photodetectors (QDIPs), QD properties, LO phonon-scattering process      34-2
Quantum dot infrared photodetectors (QDIPs), QD properties, matrix element      34-3
Quantum dot infrared photodetectors (QDIPs), QD properties, transition rates      34-2
Quantum dot infrared photodetectors (QDIPs), QD properties, wavefunction and energy state      34-1 thru 34-2
Quantum dot infrared photodetectors (QDIPs), structure and advantages, band diagram      34-3
Quantum dot infrared photodetectors (QDIPs), structure and advantages, dark current density      34-4
Quantum dot infrared photodetectors (QDIPs), structure and advantages, high photoconductive gain      34-5 thru 34-6
Quantum dot infrared photodetectors (QDIPs), structure and advantages, low dark current      34-3 thru 34-5
Quantum dot infrared photodetectors (QDIPs), structure and advantages, normal incidence light detection capability      34-3
Quasielastic neutron scattering (QENS)      40-10 40-17
Quinone-imine dyes      5-4
Raman spectra, Ag/Si-NPA      13-11 thru 13-12
Raman spectra, carbon foams      12-4 thru 12-9
Raman spectroscopy      12-3 thru 12-6 17-4
Ratiometric measurement      33-1
Reactive dyes      5-2
Reversible hydrogen storage      41-4 41-6 41-14
Rhodamine dyes      5-4
Saccharose-based carbon nanofoams      12-2
Sambles equation      2-9
SAMs      see "Self-assembled monolayers"
Scanning force microscopy (SFM)      17-4
Scanning probe microscope (SPM) lithography      28-4
Schottky barrier model      14-12 thru 14-13
Schroedinger equation      18-18 20-2 20-5 26-11
Self-assembled monolayers (SAMs)      30-10 thru 30-12
Self-assembled monolayers (SAMs), adatom geometry      7-2
Self-assembled monolayers (SAMs), alkanethiol molecules, Au(111), $CH_3SH$      17-7 thru 17-8
Self-assembled monolayers (SAMs), alkanethiol molecules, Au(111), chemical intuition      17-6
Self-assembled monolayers (SAMs), alkanethiol molecules, Au(111), equilibrium structures      17-7
Self-assembled monolayers (SAMs), alkanethiol molecules, Au(111), helium diffraction      17-6
Self-assembled monolayers (SAMs), alkanethiol molecules, Au(111), herringbone profile      17-7
Self-assembled monolayers (SAMs), alkanethiol molecules, Au(111), HREELS spectroscopy      17-6
Self-assembled monolayers (SAMs), chemisorb      17-1 thru 17-2
Self-assembled monolayers (SAMs), FTIR      7-2
Self-assembled monolayers (SAMs), growth and kinetics, in-plane phase      17-11
Self-assembled monolayers (SAMs), growth and kinetics, Langmuir kinetics      17-10
Self-assembled monolayers (SAMs), growth and kinetics, molecular surface density      17-9
Self-assembled monolayers (SAMs), growth and kinetics, phases of decanethiol      17-10
Self-assembled monolayers (SAMs), growth and kinetics, physical and chemical properties      17-10
Self-assembled monolayers (SAMs), growth and kinetics, potential curve      17-10 thru 17-11
Self-assembled monolayers (SAMs), growth and kinetics, SFG measurement      17-11
Self-assembled monolayers (SAMs), metal nanoparticles      17-8 thru 17-9
Self-assembled monolayers (SAMs), microcantilevers      7-3
Self-assembled monolayers (SAMs), molecular electronics      17-14 thru 17-15
Self-assembled monolayers (SAMs), nanobiomolecular applications      17-11 thru 17-12
Self-assembled monolayers (SAMs), nanolithography      7-3 17-13
Self-assembled monolayers (SAMs), nonlinear optics      17-15
Self-assembled monolayers (SAMs), organosilicon derivatives, hydroxylated surfaces      17-8
Self-assembled monolayers (SAMs), physisorption      17-1
Self-assembled monolayers (SAMs), preparation      7-3 thru 7-4
Self-assembled monolayers (SAMs), prototypical organic-inorganic interfaces      17-1
Self-assembled monolayers (SAMs), surface characterization      7-4 thru 17-5
Self-assembled monolayers (SAMs), switchable interfaces      17-12 thru 17-13
Self-assembled monolayers (SAMs), two-dimensional order      7-5
SERS      see "Surface-enhanced Raman scattering"
Sets      see "Single-electron transistors"
Shot noise      35-8
Si-34 lattice, e-DOS      16-13 thru 16-14
Si-34 lattice, p-DOS      16-14 thru 16-15
Si-34 lattice, pressure      16-15
Si-NPA      see "Silicon nanoporous pillar array"
Silicon clathrate, $\beta$-tungsten phase vs. clathrate I      16-10
Silicon clathrate, bubble soap      16-6 thru 16-7
Silicon clathrate, clathrate I      16-4
Silicon clathrate, clathrate II      16-3 thru 16-5
Silicon clathrate, crystallography      16-10
Silicon clathrate, electronic structure, cohesive energy      16-11
Silicon clathrate, electronic structure, distortion      16-12 thru 16-13
Silicon clathrate, electronic structure, frustration      16-12
Silicon clathrate, electronic structure, Si-34 lattice      16-13 thru 16-15
Silicon clathrate, electronic structure, stacking mode      16-12
Silicon clathrate, elementary cages      16-10 thru 16-11
Silicon clathrate, fivefold symmetry and lattices      16-4 16-6
Silicon clathrate, Greek mythological etymology      16-2
Silicon clathrate, high-pressure synthesis      16-3
Silicon clathrate, laves phase vs. clathrate II      16-10
Silicon clathrate, low-pressure synthesis      16-2 thru 16-3
Silicon clathrate, tetrahedra stacking      16-10
Silicon clathrate, topology, 3D Euclidean space      16-8
Silicon clathrate, topology, Bravais lattice      16-7
Silicon clathrate, topology, nanocages      16-6
Silicon clathrate, topology, nonregular polyhedra      16-6 thru 16-7
Silicon clathrate, topology, POAV      16-8
Silicon clathrate, topology, primitive space      16-9
Silicon clathrate, topology, Riemann’s analysis      16-8 thru 16-9
Silicon clathrate, topology, Schlafli’s theorem      16-7
Silicon clathrate, topology, schwarzite structure      16-9
Silicon clathrate, topology, translational symmetry      16-8
Silicon nanoporous pillar array (Si-NPA), biomolecule detection, Ag/Si-NPA, adenine detection      13-10 thru 13-13
Silicon nanoporous pillar array (Si-NPA), biomolecule detection, Ag/Si-NPA, preparation and characterization      13-10 thru 13-11
Silicon nanoporous pillar array (Si-NPA), biomolecule detection, Ag/Si-NPA, SERS detection stability      13-13 thru 13-14
Silicon nanoporous pillar array (Si-NPA), capacitive humidity sensitivity      13-7 thru 13-8
Silicon nanoporous pillar array (Si-NPA), CdS/Si nanoheterojunction array, electrical properties      13-19 thru 13-20
Silicon nanoporous pillar array (Si-NPA), CdS/Si nanoheterojunction array, preparation and characterization      13-16 thru 13-18
Silicon nanoporous pillar array (Si-NPA), CdS/Si nanoheterojunction array, semiconductor nanoheterostructures      13-16
Silicon nanoporous pillar array (Si-NPA), CdS/Si nanoheterojunction array, three-primary-color, photoluminescence      13-18 thru 13-19
Silicon nanoporous pillar array (Si-NPA), CNT/Si-NPA, enhanced field emission      13-15 thru 13-16
Silicon nanoporous pillar array (Si-NPA), CNT/Si-NPA, preparation and characterization      13-14 thru 13-15
Silicon nanoporous pillar array (Si-NPA), humidity hysteresis      13-9
Silicon nanoporous pillar array (Si-NPA), morphology control      13-3 thru 13-4
Silicon nanoporous pillar array (Si-NPA), nanocomposites      13-4
Silicon nanoporous pillar array (Si-NPA), optical properties, light absorption      13-4 thru 13-5
Silicon nanoporous pillar array (Si-NPA), optical properties, photoluminescence      13-5 thru 13-7
Silicon nanoporous pillar array (Si-NPA), preparation      13-1 thru 13-2
Silicon nanoporous pillar array (Si-NPA), response and recovery time      13-8 thru 13-9
Silicon nanoporous pillar array (Si-NPA), structural and morphological characterization      13-2 thru 13-3
Silver nanoparticles      2-17
Single-electron transistors (SETs)      21-14 thru 21-20 30-3
Single-input-single-output (SISO) systems      8-8 thru 8-12
Single-walled carbon nanohorns (SWNH) vs. SWNT      40-16
Single-walled carbon nanohorns (SWNH), merits      40-16
Single-walled carbon nanohorns (SWNH), QENS spectra      40-17 thru 40-19
Single-walled carbon nanohorns (SWNH), spectral line shapes      40-16 thru 40-17
Single-walled carbon nanohorns (SWNH), structure      40-15 thru 40-16
Single-walled carbon nanohorns (SWNH), synthesis      40-15 40-16
Single-walled nanotubes (SWNTs)      1-8 thru 1-10
SISO systems      see "Single-input-single-output systems"
Site-selective chemical etching      28-7
Smart composite nanopositioning, MIMO, AFAMRMC      8-13 thru 8-17
Smart composite nanopositioning, MIMO, configuration and dynamics      8-12 thru 8-13
Smart composite nanopositioning, MIMO, dynamic model errors      8-20
Smart composite nanopositioning, MIMO, impulse responses      8-17
Smart composite nanopositioning, MIMO, positioning control capability      8-17 thru 8-18
Smart composite nanopositioning, MIMO, positioning errors      8-18 thru 8-20
Smart composite nanopositioning, MIMO, simultaneous precision positioning and vibration control capabilities      8-18 thru 8-19
Smart composite nanopositioning, MIMO, vibration suppression      8-17 thru 8-18
Smart composite nanopositioning, SISO, ACX PZT patch      8-8 thru 8-9
Smart composite nanopositioning, SISO, adaptive control schemes      8-9 thru 8-10
Smart composite nanopositioning, SISO, AFC      8-11
Smart composite nanopositioning, SISO, AIMC      8-11 thru 8-12
Smart composite nanopositioning, SISO, CCC PZT patches      8-8 thru 8-9
Smart composite nanopositioning, SISO, composite panel      8-8
Smart composite nanopositioning, SISO, experimental system      8-10 thru 8-11
Smart composite nanopositioning, SISO, HAC      8-12
Smart composite nanopositioning, SISO, PZT-5A piezoelectric material      8-9
Smart composite nanopositioning, SISO, relative error      8-11 thru 8-12
Smoluchowski effect      18-7 thru 18-9
Sodium alanate, hydrogen storage      42-3
Soft chemistry      15-1
Solid-state hydrogen storage      42-2 thru 42-3
Spin valves, configuration      38-12 thru 38-13
Spin valves, frequency vs. current      38-15
Spin valves, frequency vs. field variation      38-14 thru 38-15
1 2 3 4 5 6
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте