Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Sattler K.D. — Handbook of Nanophysics: Functional Nanomaterials
Sattler K.D. — Handbook of Nanophysics: Functional Nanomaterials



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Handbook of Nanophysics: Functional Nanomaterials

Автор: Sattler K.D.

Аннотация:

Handbook of Nanophysics: Functional Nanomaterials illustrates the importance of tailoring nanomaterials to achieve desired functions in applications. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume covers various composites, including carbon nanotube/polymer composites, printable metal nanoparticle inks, polymer�clay nanocomposites, biofunctionalized titanium dioxide-based nanocomposites, nanocolorants, ferroic nanocomposites, and smart composite systems. It also describes nanoporous materials, a giant nanomembrane, graphitic foams, arrayed nanoporous silicon pillars, nanoporous anodic oxides, metal oxide nanohole arrays, carbon clathrates, self-assembled monolayers, epitaxial graphene, and graphene nanoribbons, nanostructures, quantum dots, and cones. After focusing on the methods of nanoindentation and self-patterning, the book discusses nanosensors, nano-oscillators, and hydrogen storage. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2011

Количество страниц: 790

Добавлена в каталог: 12.07.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Graphene quantum dots, Klein’s paradox, energy dispersion law      23-2 thru 23-3
Graphene quantum dots, Klein’s paradox, Hamiltonian matrix      23-1 thru 23-2
Graphene quantum dots, Klein’s paradox, Klein’s tunneling      23-3
Graphene quantum dots, Klein’s paradox, Pauli matrices      23-2
Graphene quantum dots, nonrelativistic systems      23-3
Graphene quantum dots, quantized energy spectrum      21-14
Graphene quantum dots, quantum confinement effects, Coulomb diamonds      21-21 thru 21-22
Graphene quantum dots, quantum confinement effects, differential conductance      21-21
Graphene quantum dots, quantum confinement effects, ground-state energy      21-22
Graphene quantum dots, quantum confinement effects, orbital quantum states      21-20
Graphene quantum dots, quantum confinement effects, plunger gate voltage      21-20 thru 21-21
Graphene quantum dots, quantum confinement effects, scanning force micrograph image      21-20 thru 21-21
Graphene quantum dots, quantum confinement effects, single-particle energy      21-22
Graphene quantum dots, regular and chaotic-confined billiard system      21-14
Graphene quantum dots, SETs, barrier gate potentials      21-15 thru 21-16
Graphene quantum dots, SETs, constriction resonance      21-18
Graphene quantum dots, SETs, Coulomb blockade      21-14 thru 21-15 21-17
Graphene quantum dots, SETs, Coulomb diamond measurements      21-17 thru 21-18
Graphene quantum dots, SETs, Coulomb resonances      21-17
Graphene quantum dots, SETs, effective tunable tunneling barrier      21-15
Graphene quantum dots, SETs, electronic transport      21-14
Graphene quantum dots, SETs, false color scanning force microscope image      21-15 thru 21-16
Graphene quantum dots, SETs, heuristic energy diagram model      21-16
Graphene quantum dots, SETs, lever arms and electrostatic coupling      21-18
Graphene quantum dots, SETs, transport characteristics      21-16 thru 21-17
Graphene quantum dots, SETs, types      23-4 thru 23-5
Graphene quantum dots, SETs, ultrathin layer, graphite      23-1
Graphene-gas molecule interaction, $NH_3$ and $NO_2$ adsorption      24-4
Graphene-gas molecule interaction, $SiO_2$ substrate      24-9 thru 24-10
Graphene-gas molecule interaction, activated carbon      24-2
Graphene-gas molecule interaction, CNT-FET      24-2 thru 24-3
Graphene-gas molecule interaction, diamagnetic adsorbates      24-10
Graphene-gas molecule interaction, Dirac electron      24-1
Graphene-gas molecule interaction, gas sensors      24-1 thru 24-2
Graphene-gas molecule interaction, Hall bar geometry      24-3
Graphene-gas molecule interaction, micromechanical cleavage      24-1
Graphene-gas molecule interaction, microscopic theory, acceptor level      24-7
Graphene-gas molecule interaction, microscopic theory, charge transfer analysis      24-4 thru 24-5
Graphene-gas molecule interaction, microscopic theory, closed-shell molecules      24-8
Graphene-gas molecule interaction, microscopic theory, cluster formation      24-9
Graphene-gas molecule interaction, microscopic theory, density of states (DOS)      24-6
Graphene-gas molecule interaction, microscopic theory, electronic and structural properties      24-5
Graphene-gas molecule interaction, microscopic theory, electronic supercell band structures      24-8 thru 24-9
Graphene-gas molecule interaction, microscopic theory, Hall resistance vs. gate voltage      24-7
Graphene-gas molecule interaction, microscopic theory, LDA and GGA      24-5
Graphene-gas molecule interaction, microscopic theory, PMMA coating      24-4
Graphene-gas molecule interaction, microscopic theory, sublattice degeneracy      24-8
Graphene-gas molecule interaction, resistance      24-3 thru 24-4
Graphene-gas molecule interaction, sensitivity      24-2 24-4
Graphitic foams      see "Carbon foams"
Gravimetric capacity      41-3
Grazing incidence X-ray diffraction (GIXD)      17-4
Green’s function      20-7 20-10 20-19
Halpin — Tsai equations      1-7
Hankel function      23-8 23-10
Hanszen — Wronski equation      2-8
Hardness      27-3 thru 27-5
Heaviside function      36-10
High-density polyethylene (HDPE)      1-5 thru 1-6
High-resolution electron energy loss spectroscopy (HREELS)      17-5
Highest Occupied Molecular Orbital (HOMO)      24-6 24-8
Highly oriented pyrolytic graphite (HOPG)      12-4
Hooke’s law      25-10 thru 25-11
Hydrogen adsorption, nanoporous materials, adsorbents, hydrogen storage, activated carbons      42-4
Hydrogen adsorption, nanoporous materials, adsorbents, hydrogen storage, carbon aerogels      42-5
Hydrogen adsorption, nanoporous materials, adsorbents, hydrogen storage, MOF      42-5 thru 42-6
Hydrogen adsorption, nanoporous materials, adsorbents, hydrogen storage, SWNT      42-4 thru 42-5
Hydrogen adsorption, nanoporous materials, adsorption isotherms, Dubinin model      42-7
Hydrogen adsorption, nanoporous materials, adsorption isotherms, Langmuir model      42-6
Hydrogen adsorption, nanoporous materials, adsorption isotherms, modified D-A isotherm fit      42-7 thru 42-8
Hydrogen adsorption, nanoporous materials, adsorption isotherms, virial series expansion      42-6
Hydrogen adsorption, nanoporous materials, adsorption-based storage systems      42-8 thru 42-9
Hydrogen adsorption, nanoporous materials, cryo-compressed tanks, hydrogen storage      42-2
Hydrogen adsorption, nanoporous materials, hydrogen energy      42-1
Hydrogen adsorption, nanoporous materials, liquid hydrogen storage      42-2
Hydrogen adsorption, nanoporous materials, physisorption      42-3 thru 42-4
Hydrogen adsorption, nanoporous materials, room-temperature hydrogen storage      42-2
Hydrogen adsorption, nanoporous materials, solid-state hydrogen storage      42-2 thru 42-3
Hydrogen adsorption, nanoporous materials, storage system performance      42-1
Hydrogen cars      41-1 41-2 see
hydrogen molecule      see also "Molecular hydrogen carbon
Hydrogen molecule, interaction potential      40-4
Hydrogen molecule, molecular properties      40-2 thru 40-3
Hydrogen molecule, phase diagram      40-3
Hydrogen storage, activated carbons      41-8 thru 41-10
Hydrogen storage, carbide-derived carbons      41-10 thru 41-12
Hydrogen storage, fullerenes, $(Be + nH_2)@C_{60}$ system      39-8
Hydrogen storage, fullerenes, $(nH_2 + Mg)@C_{120}$ system      39-11
Hydrogen storage, fullerenes, $C_{56}$ system      39-16
Hydrogen storage, fullerenes, $C_{58}$ and its derivatives      39-14 thru 39-16
Hydrogen storage, fullerenes, $nH_2@C_{60}$ system      39-4 thru 39-6
Hydrogen storage, fullerenes, $Se@C_{60}$ system      39-8
Hydrogen storage, fullerenes, fullerene $C_{60}$      39-6 thru 39-7
Hydrogen storage, fullerenes, hydrogenated $C_{60}$      39-17
Hydrogen storage, hydrogen cars      41-1
Hydrogen storage, hydrogen production      41-1 thru 41-2
Hydrogen storage, mechanism      41-3 thru 41-4
Hydrogen storage, nanoporous carbons vs. metal-organic frameworks      41-12 thru 41-13
Hydrogen storage, nanoporous carbons vs. PIMs      41-12
Hydrogen storage, nanoporous carbons vs. zeolites      41-12
Hydrogen storage, nanoporous carbons, properties      41-7 thru 41-8
Hydrogen storage, onboard hydrogen storage      41-2 thru 41-3
Hydrogen storage, physisorption      41-2
Hydrogen storage, physisorption vs. chemisorption      41-4
Hydrogen storage, physisorption, at nanoscale      41-5 thru 41-7
Hydrogen storage, physisorption, hydrogen-adsorbent surface interaction      41-4
Hydrogen storage, physisorption, specific pore volume      41-5
Hydrogen storage, physisorption, specific surface area      41-4 thru 41-5
Hydrogen storage, storage types      41-3
Immunosensor      30-13
Incoherent neutron scattering      40-9
Indamins dyes      5-4
Infrared spectroscopy      17-4
International Union of Pure and Applied Chemistry (IUPAC)      41-7
Intracellular measurement      33-1 33-2 33-7 33-11
Ion-correlation sensor      33-5
Isotropic polymer composites      1-9 thru 1-10
Johnson noise current      34-10
Kelvin equation      9-8
Kirchhoff stress      26-6 thru 26-7
Kvaerner’s Carbon-Black and Hydrogen (KCB) process      25-8 25-9 25-15 25-16
Laboratory assay      33-10 thru 33-11
Landau level spectrum      19-8
Landau Lifshitz Gilbert (LLG) equation      38-9 38-10
Landau — Lifshitz — Gilbert — Slonczewski (LLGS) equation      38-10 thru 38-11 38-17
Langmuir — Blodgett approach      11-2
Laser excitation energy, $I_D/I_G$ ratio      12-8 thru 12-9
Laser excitation energy, best-fit frequencies      12-9 thru 12-10
Laser excitation energy, linear equation      12-10 thru 12-11
Laser excitation energy, skewness      12-10
Laser excitation energy, TO + LA feature      12-9
Laser-induced desorption      30-7
LEEM      see "Low-energy electron microscopy"
Lennard — Jones potential constant, graphitic systems      36-3
Lennard — Jones potential description      36-2 thru 36-3
Lennard — Jones potential graph      36-3
Lennard — Jones potential integral $K_n^\star$ evaluation      36-14 thru 36-15
Lennard — Jones potential integral $L_n^\star$ evaluation      36-15
Li-ion battery      15-6
Li-ion charge-discharge properties      15-6 thru 15-8
Lieb’s theorem      20-12
Liquid hydrogen storage      41-3 42-2
Liquid phase deposition (LPD) method      15-2 15-6
Local density of states (LDOS)      25-12 thru 25-13
Local-density-approximation (LDA)      40-13 thru 40-14
Localized field, fluorescence enhancement      32-10 thru 32-11
Localized field, metallic nanoparticle      32-9 thru 32-10
Localized field, nanostructure properties      32-8 thru 32-9
Localized field, near-field optical distribution      32-10
Localized field, propagation      32-9
Localized field, structure      32-8 thru 32-9
Localized surface plasmon resonances (LSPR) sensor      33-2 33-4
Localized surface plasmon resonances (LSPR) sensor, cancer imaging in vivo      33-9
Localized surface plasmon resonances (LSPR) sensor, metallic nanosensor      33-6
Localized surface plasmon resonances (LSPR) sensor, reflectance imaging      33-9
Localized surface plasmon resonances (LSPR) sensor, scattering imaging      33-10
Low-Energy Electron Diffraction (LEED)      17-4
Low-energy electron microscopy (LEEM) vs. X-ray diffraction      31-7 thru 31-8
Low-energy electron microscopy (LEEM), adsorbate-induced self-patterning      see "Adsorbate-induced surface self-patterning"
Low-energy electron microscopy (LEEM), instrument      31-6 thru 31-7
Low-energy electron microscopy (LEEM), operation principle      31-7
Lowest Unoccupied Molecular Orbital (LUMO)      24-6 24-8
LSPR sensor      see "Localized surface plasmon resonances sensor"
Luminescent sensors      see "Nanoscale luminescent sensors"
Macropores      9-2 thru 9-3
Madelung energy      18-17
Magnetic devices, anisotropy      38-8
Magnetic devices, characterization      38-2
Magnetic devices, damping      38-10
Magnetic devices, free precession orbits      38-7 thru 38-8
Magnetic graphene nanostructures, benzenoid graph theory and Lieb’s theorem      22-3 thru 22-4
Magnetic graphene nanostructures, ferromagnetism      22-1
Magnetic graphene nanostructures, finite graphene fragments      22-4 thru 22-5
Magnetic graphene nanostructures, magnetic materials      22-1 thru 22-2
Magnetic graphene nanostructures, point defects      22-7 thru 22-8
Magnetic graphene nanostructures, spintronics      22-2 22-6
Magnetic graphene nanostructures, tight binding and mean-field Hubbard model      22-2 thru 22-3
Magnetic graphene nanostructures, zigzag edges and nanoribbons, atomic structures      22-5
Magnetic graphene nanostructures, zigzag edges and nanoribbons, localized magnetic moments      22-6
Magnetic graphene nanostructures, zigzag edges and nanoribbons, scanning tunneling microscopy (STM)      22-7
Magnetic graphene nanostructures, zigzag edges and nanoribbons, transverse and longitudinal spin fluctuations      22-6
Magnetic tunnel junction (MTJ)      38-4 thru 38-5 38-13
Magnetoelectric (ME) effects, composites, demagnetizing field      6-2
Magnetoelectric (ME) effects, composites, device applications      6-3
Magnetoelectric (ME) effects, composites, magnetostrictive and piezoelectric phases      6-1 thru 6-2
Magnetoelectric (ME) effects, composites, product and sum properties      6-1
Magnetoelectric (ME) effects, composites, static magnetic field dependence      6-2 thru 6-3
Magnetoelectric (ME) effects, definition      6-1
Magnetoelectric (ME) effects, nanobilayer, axial forces      6-4 thru 6-5
Magnetoelectric (ME) effects, nanobilayer, cobalt ferrite-barium titanate      6-3
Magnetoelectric (ME) effects, nanobilayer, Landau — Ginsburg — Devonshire phenomenological thermodynamic theory      6-5
Magnetoelectric (ME) effects, nanobilayer, longitudinal axial strains      6-4
Magnetoelectric (ME) effects, nanobilayer, moment equilibrium      6-5
Magnetoelectric (ME) effects, nanobilayer, NFO PZT bilayer      6-4
Magnetoelectric (ME) effects, nanobilayer, piezoelectric and magnetostrictive phases      6-3 thru 6-4
Magnetoelectric (ME) effects, nanobilayer, PZT volume fraction dependence      6-6
Magnetoelectric (ME) effects, nanobilayer, transverse field orientation      6-4
Magnetoelectric (ME) effects, nanobilayer, voltage coefficients      6-3 6-6
Magnetomotive technique, advantages      35-17
Magnetomotive technique, doubly clamped beam      35-3 35-10
Magnetomotive technique, equivalent electrical RLC circuit      35-10 thru 35-11
Magnetomotive technique, induced emf, resonating beam      35-10
Magnetomotive technique, Lorentz force      35-9
Magnetomotive technique, measurement setup      35-10
Magnetomotive technique, sensor      37-10
Magnetoresistance (MR) ratio      38-4 38-5
Manganese oxide mesoporous structures (MOMS)      10-10
Maxwell equation      7-7
Maxwell — Garnet EMA      2-15
ME effects      see "Magnetoelectric effects"
Mean field Hubbard model      20-7
Mechanical Johnson noise      35-7
Mechanical resistance      35-13
Mechanosynthesis      32-5 thru 32-6
Mesophase pitch-based carbon foams      12-2
Mesopores      9-2 thru 9-3
Mesoporous titania      10-10
Mesoporous zirconia      10-10
Metal oxide nanohole array, bottom-up and top-down approach      15-1
Metal oxide nanohole array, formation mechanism, anodic alumina, surface structure      15-3
Metal oxide nanohole array, formation mechanism, boric acid and aluminum ions      15-4 thru 15-5
Metal oxide nanohole array, formation mechanism, cross-sectional structure      15-3 thru 15-4
Metal oxide nanohole array, formation mechanism, deposition and removal process      15-4
Metal oxide nanohole array, formation mechanism, network-type titania nanohole array      15-5
Metal oxide nanohole array, formation mechanism, titania nanohole array      15-3
Metal oxide nanohole array, formation mechanism, titania nanorod array      15-4 15-6
Metal oxide nanohole array, Li-ion battery      15-6
Metal oxide nanohole array, Li-ion charge-discharge properties      15-6 thru 15-8
Metal oxide nanohole array, soft solution process      15-1
Metal-assisted chemical etching, porous silicon formation      28-7
Metal-assisted chemical etching, silicon column arrays, colloidal crystal mask      28-7
Metal-assisted chemical etching, silicon column arrays, mechanism      28-9
Metal-assisted chemical etching, silicon column arrays, schematics      28-7
Metal-assisted chemical etching, silicon column arrays, SEM images, Ag particles on Si      28-8 thru 28-9
Metal-assisted chemical etching, silicon hole arrays      28-9 thru 28-10
Metal-assisted chemical etching, silicon microwell arrays      28-10 thru 28-11
Metal-organic framework (MOF)      42-5 thru 42-6 see
Metal-organic framework (MOF), advantages      41-13
Metal-organic framework (MOF), gravimetric and volumetric capacities      41-12 thru 41-13
Metal-organic framework (MOF), isosteric heat      41-13
Metal-organic framework (MOF), porosity      41-12
Metal-organic framework (MOF), specific surface area      41-12 thru 41-13
Metallic nanosensors      33-6
Microcontact printing      30-10
Microelectromechanical systems (MEMS)      26-1 26-13
Microemulsion method      32-6 thru 32-7
Micromagnetics, discretized device structure      38-17 thru 38-18
Micromagnetics, spinwaves      38-18
Micromagnetics, vortex oscillator      38-18 thru 38-19
Micropores      9-2 thru 9-3
Microwave oscillation      38-1 38-2
Miller indices      31-2 31-5
MIMO systems      see "Multi-input-multi-output systems"
Mobil composition of matter (MCM)      10-3 thru 10-5 10-9
Modified slopes method (MSM)      29-12
mof      see "Metal-organic framework"
Moire and dislocation networks, force field theory approach      18-6 thru 18-7
Moire and dislocation networks, h-BN nanomesh, relief view      18-6
Moire and dislocation networks, Moire-type superstructures      18-7
Moire and dislocation networks, overlayer system      18-5 thru 18-6
Moire and dislocation networks, superstructure lattice constant      18-5
Moire and dislocation networks, valley and mounds      18-7
Molecular hydrogen, bulk vs. microscopic probes, coherent neutron scattering      40-8 thru 40-9
Molecular hydrogen, bulk vs. microscopic probes, incoherent neutron scattering      40-9
Molecular hydrogen, bulk vs. microscopic probes, Langmuir model      40-7
Molecular hydrogen, bulk vs. microscopic probes, neutron spectroscopy      40-9
Molecular hydrogen, bulk vs. microscopic probes, pressure-temperature dependence      40-7 thru 40-8
Molecular hydrogen, bulk vs. microscopic probes, QENS      40-10
Molecular hydrogen, carbon nanostructures, alkali-doped graphite intercalates, $H_2$ adsorption      40-20
Molecular hydrogen, carbon nanostructures, alkali-doped graphite intercalates, $H_2$ orientational potential      40-24 thru 40-25
Molecular hydrogen, carbon nanostructures, alkali-doped graphite intercalates, adsorption sites      40-23
Molecular hydrogen, carbon nanostructures, alkali-doped graphite intercalates, electron densities      40-22
Molecular hydrogen, carbon nanostructures, alkali-doped graphite intercalates, experimental vs. PW-DFT calculations      40-22 40-23
Molecular hydrogen, carbon nanostructures, alkali-doped graphite intercalates, INS spectra      40-20 thru 40-21
Molecular hydrogen, carbon nanostructures, alkali-doped graphite intercalates, minimum-energy configuration      40-22
Molecular hydrogen, carbon nanostructures, alkali-doped graphite intercalates, neutron Bragg reflection      40-20
Molecular hydrogen, carbon nanostructures, alkali-doped graphite intercalates, orientational potential      40-22 thru 40-23
Molecular hydrogen, carbon nanostructures, alkali-doped graphite intercalates, potential energy curves      40-21
Molecular hydrogen, carbon nanostructures, alkali-doped graphite intercalates, PW-DFT calculations      40-21 thru 40-22
Molecular hydrogen, carbon nanostructures, alkali-doped graphite intercalates, quantum delocalization      40-24 thru 40-25
Molecular hydrogen, chemisorption      40-6 thru 40-7
Molecular hydrogen, computer simulation, computational experiment      40-10 thru 40-11
Molecular hydrogen, computer simulation, first-principles (ab initio) modeling      40-12 thru 40-14
Molecular hydrogen, computer simulation, quantum effects      40-12
Molecular hydrogen, computer simulation, semiempirical simulation      40-11 thru 40-12
Molecular hydrogen, GCMC      40-25 40-26
Molecular hydrogen, geometric confinement, carbon nanohorns, $H_2$-substrate interaction      40-19 thru 40-20
Molecular hydrogen, geometric confinement, carbon nanohorns, elastic form factor      40-19
Molecular hydrogen, geometric confinement, carbon nanohorns, neutron spectra      40-16 40-17
Molecular hydrogen, geometric confinement, carbon nanohorns, phonon spectrum      40-19
Molecular hydrogen, geometric confinement, carbon nanohorns, QENS spectra      40-17 thru 40-19
Molecular hydrogen, geometric confinement, carbon nanohorns, spectral line shapes      40-16 thru 40-17
Molecular hydrogen, geometric confinement, carbon nanohorns, structure      40-15 thru 40-16
Molecular hydrogen, geometric confinement, carbon nanohorns, TEM      40-15 40-16
Molecular hydrogen, hydrogen molecule, bulk properties and phase diagram      40-3 thru 40-4
Molecular hydrogen, hydrogen molecule, molecular properties      40-2 thru 40-3
Molecular hydrogen, hydrogen storage      40-1 thru 40-2
Molecular hydrogen, no-man’s land region, binding energy      40-6
Molecular hydrogen, physisorption challenge      40-6
Molecular hydrogen, physisorption charge-induced-dipole interactions      40-5
1 2 3 4 5 6
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте