Авторизация
Поиск по указателям
Sattler K.D. — Handbook of Nanophysics: Functional Nanomaterials
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Handbook of Nanophysics: Functional Nanomaterials
Автор: Sattler K.D.
Аннотация: Handbook of Nanophysics: Functional Nanomaterials illustrates the importance of tailoring nanomaterials to achieve desired functions in applications. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume covers various composites, including carbon nanotube/polymer composites, printable metal nanoparticle inks, polymer�clay nanocomposites, biofunctionalized titanium dioxide-based nanocomposites, nanocolorants, ferroic nanocomposites, and smart composite systems. It also describes nanoporous materials, a giant nanomembrane, graphitic foams, arrayed nanoporous silicon pillars, nanoporous anodic oxides, metal oxide nanohole arrays, carbon clathrates, self-assembled monolayers, epitaxial graphene, and graphene nanoribbons, nanostructures, quantum dots, and cones. After focusing on the methods of nanoindentation and self-patterning, the book discusses nanosensors, nano-oscillators, and hydrogen storage. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.
Язык:
Рубрика: Физика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2011
Количество страниц: 790
Добавлена в каталог: 12.07.2014
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Molecular hydrogen, physisorption van der Waals (dispersive) forces 40-4 thru 40-5
Molecular hydrogen, rolling and bending graphite sheets 40-14 thru 40-15
Molecular probes 33-4 thru 33-5
Molecular surgery approach 39-2
Mordant dyes 5-2
Mott — Schottky theory 14-12
Multi-input-multi-output (MIMO) systems 8-12 thru 8-20
Multifunctional linear actuators, coarse/fine long-travel assembly 8-4
Multifunctional linear actuators, experimental results 8-7 thru 8-8
Multifunctional linear actuators, mathematical model 8-4 thru 8-5
Multifunctional linear actuators, nonlinear compensation control, time history 8-6 thru 8-7
Multifunctional linear actuators, nonlinear compensation control, linear velocity vs. input voltage 8-5
Multifunctional linear actuators, nonlinear compensation control, positive and negative motion directions 8-7
Multifunctional linear actuators, nonlinear compensation control, velocity vs. AFLC input 8-6 thru 8-7
Multifunctional linear actuators, piezoelectric stack actuator 8-4
Multilayered epitaxial graphene (MEG) 19-7 thru 19-8
Nanocage materials, clathrate, carbon clathrate 16-19
Nanocage materials, clathrate, column IIIA, IVA and VA 16-20
Nanocage materials, clathrate, crystalline structure 16-1
Nanocage materials, clathrate, doping, under pressure 16-17 thru 16-18
Nanocage materials, clathrate, doping, features 16-15
Nanocage materials, clathrate, doping, Friauf — Lave structure 16-19
Nanocage materials, clathrate, doping, Gibbs free energy 16-19
Nanocage materials, clathrate, doping, hard materials 16-17
Nanocage materials, clathrate, doping, isolated cages 16-15 thru 16-16
Nanocage materials, clathrate, doping, metal insulator transition 16-17
Nanocage materials, clathrate, doping, optoelectronic properties 16-19
Nanocage materials, clathrate, doping, superconductivity 16-18
Nanocage materials, clathrate, doping, thermoelectricity properties 16-18 thru 16-19
Nanocage materials, clathrate, ionocovalent compounds 16-20
Nanocage materials, clathrate, silicon clathrate see "Silicon clathrate"
Nanocage materials, clathrate, YBaCuO family 16-1
Nanocolorants, colorant 5-1
Nanocolorants, definition 5-5
Nanocolorants, dyes, chemical classification 5-2 thru 5-5
Nanocolorants, dyes, definition 5-1
Nanocolorants, dyes, usage classification 5-2
Nanocolorants, miniemulsion polymerizations, aqueous dispersions, polystyrene latexes 5-12 thru 5-13
Nanocolorants, miniemulsion polymerizations, carbon black encapsulation 5-11 thru 5-12
Nanocolorants, miniemulsion polymerizations, characteristics 5-10
Nanocolorants, miniemulsion polymerizations, dye-doped nanocolorants 5-13 thru 5-14
Nanocolorants, miniemulsion polymerizations, pigment encapsulation 5-11
Nanocolorants, miniemulsion polymerizations, preparation and homogenization 5-9
Nanocolorants, miniemulsion polymerizations, principle 5-8
Nanocolorants, miniemulsion polymerizations, radical polymerizations 5-10 thru 5-11
Nanocolorants, miniemulsion polymerizations, surfactant variation 5-9 thru 5-10
Nanocolorants, organic pigments dispersion 5-6 thru 5-7
Nanocolorants, pigments, chemical composition 5-5
Nanocolorants, pigments, definition 5-1 5-5
Nanocolorants, spirobenzopyran-based photochromic nanohybrids 5-15
Nanocolorants, supercritical carbon dioxide processing 5-14
Nanocolorants, synthesis and biomedical applications 5-15
Nanocolorants, traditional mechanical grinding 5-6
Nanocolorants, vapor phase method 5-7 thru 5-8
Nanocontact printing 17-3
Nanoelectromechanical system (NEMS) resonators, application 37-1
Nanoelectromechanical system (NEMS) resonators, displacement sensor, electrostatic sensing 37-10
Nanoelectromechanical system (NEMS) resonators, displacement sensor, magnetomotive sensing 37-10
Nanoelectromechanical system (NEMS) resonators, displacement sensor, optical interferometer 37-9 thru 37-10
Nanoelectromechanical system (NEMS) resonators, displacement sensor, optical lever, optical beam 37-9
Nanoelectromechanical system (NEMS) resonators, doubly clamped flexural resonators, cantilevered beams 37-5
Nanoelectromechanical system (NEMS) resonators, doubly clamped flexural resonators, dissipation 37-4 thru 37-6
Nanoelectromechanical system (NEMS) resonators, doubly clamped flexural resonators, driven damped beams 37-6 thru 37-7
Nanoelectromechanical system (NEMS) resonators, doubly clamped flexural resonators, generic structure 37-2
Nanoelectromechanical system (NEMS) resonators, doubly clamped flexural resonators, lowest frequency modes 37-3 thru 37-4
Nanoelectromechanical system (NEMS) resonators, doubly clamped flexural resonators, material properties 37-3
Nanoelectromechanical system (NEMS) resonators, doubly clamped flexural resonators, mode frequencies 37-3
Nanoelectromechanical system (NEMS) resonators, doubly clamped flexural resonators, resonance frequencies 37-4
Nanoelectromechanical system (NEMS) resonators, electrostatic actuation 37-10
Nanoelectromechanical system (NEMS) resonators, fabrication 37-1 thru 37-2
Nanoelectromechanical system (NEMS) resonators, figures of merit 37-1
Nanoelectromechanical system (NEMS) resonators, geometry 37-2
Nanoelectromechanical system (NEMS) resonators, magnetomotive actuation 37-10
Nanoelectromechanical system (NEMS) resonators, noise, Allan variance 37-8 thru 37-9
Nanoelectromechanical system (NEMS) resonators, noise, dissipation-induced amplitude noise 37-8
Nanoelectromechanical system (NEMS) resonators, noise, quantification 37-7 thru 37-8
Nanoelectromechanical system (NEMS) resonators, piezoelectric actuation 37-10
Nanoelectromechanical system (NEMS) resonators, resonance frequency 37-2
Nanoelectromechanical system (NEMS) resonators, thermal actuation 37-10
Nanoelectronics 30-11 thru 30-13
Nanohole arrays, silicon, anodic alumina mask, anodic porous alumina 28-2
Nanohole arrays, silicon, anodic alumina mask, anodization 28-2 thru 28-4
Nanohole arrays, silicon, anodic alumina mask, electrochemical etching 28-6 thru 28-7
Nanohole arrays, silicon, anodic alumina mask, nanopatterning, silicon surface 28-1 thru 28-2
Nanohole arrays, silicon, anodic alumina mask, pattern transfer, silicon substrate 28-4
Nanohole arrays, silicon, anodic alumina mask, silicon nanocolumn arrays 28-4 thru 28-6
Nanohole arrays, silicon, electrochemistry principle 28-1
Nanohole arrays, silicon, metal-assisted chemical etching, porous silicon formation 28-7
Nanohole arrays, silicon, metal-assisted chemical etching, silicon column arrays formation 28-7 thru 28-9
Nanohole arrays, silicon, metal-assisted chemical etching, silicon hole arrays formation 28-9 thru 28-10
Nanohole arrays, silicon, metal-assisted chemical etching, silicon microwell arrays 28-10 thru 28-11
Nanohorns 25-5
Nanoindentation, atomistic and multiscale approaches, concurrent and hierarchical methods 26-13
Nanoindentation, atomistic and multiscale approaches, first principles calculations 26-11 thru 26-12
Nanoindentation, atomistic and multiscale approaches, molecular dynamics calculations 26-12 thru 26-13
Nanoindentation, bionics 29-12
Nanoindentation, bone 29-10 thru 29-11
Nanoindentation, calcite 29-11
Nanoindentation, coefficient of friction 27-6 thru 27-8
Nanoindentation, concave-convex mechanism 29-2
Nanoindentation, creep 27-3 thru 27-4
Nanoindentation, definition 29-1
Nanoindentation, elastic and plastic properties 27-1 27-2
Nanoindentation, elastic modulus 26-3 thru 26-4
Nanoindentation, elasto-plastic solid 26-4
Nanoindentation, experimental vs. numerical indentation 27-6
Nanoindentation, finite element analysis see "Finite element analysis"
Nanoindentation, finite element modeling 27-5 thru 27-6
Nanoindentation, force-displacement curve 29-2 thru 29-3
Nanoindentation, hardness 27-3
Nanoindentation, indentation cycle 27-4 thru 27-5
Nanoindentation, indentation load 27-3 27-4
Nanoindentation, indenter geometry 27-10 thru 27-12
Nanoindentation, insects 29-9 thru 29-10
Nanoindentation, loading methods, force-time, force-displacement and displacement-time curves 29-3 thru 29-4
Nanoindentation, loading methods, load value 29-5
Nanoindentation, loading methods, properties, holding times 29-3 29-5
Nanoindentation, loading methods, reduced modulus 29-4 thru 29-5
Nanoindentation, loading methods, viscoelastic deformation 29-2 thru 29-3
Nanoindentation, loading-unloading mode 29-3
Nanoindentation, MEMS and NEMS 26-1
Nanoindentation, MSM 29-12
Nanoindentation, nacre 29-11
Nanoindentation, nano dynamic mechanical analysis 29-8 thru 29-9
Nanoindentation, Oliver — Pharr method 26-4 thru 26-5 29-11
Nanoindentation, phase transformation 27-1 thru 27-3
Nanoindentation, power-law function 26-5
Nanoindentation, rigid cone 26-2
Nanoindentation, rigid spherical indenter 26-2 thru 26-3
Nanoindentation, sample hydration 29-7 thru 29-8
Nanoindentation, surface roughness and tip selection, applications 29-6
Nanoindentation, surface roughness and tip selection, elastic modulus and hardness 29-5
Nanoindentation, surface roughness and tip selection, elytron 29-6 thru 29-7
Nanoindentation, surface roughness and tip selection, lamellar structure, dentin specimen 29-6
Nanoindentation, surface roughness and tip selection, pre-scanning method 29-6
Nanoindentation, teeth 29-10
Nanoindentation, three-sided Berkovich indenter 26-3
Nanoindentation, tip roundness 27-7 thru 27-9
Nanoindentation, Young’s modulus 27-3 29-2
Nanomechanical resonators, actuation and detection, electrostatic technique 35-11 thru 35-13
Nanomechanical resonators, actuation and detection, magnetomotive technique 35-9 thru 35-11
Nanomechanical resonators, actuation and detection, piezoelectric technique 35-13 thru 35-17
Nanomechanical resonators, micromechanical applications, accelerometers 35-17 thru 35-18
Nanomechanical resonators, micromechanical applications, biomedical applications 35-19
Nanomechanical resonators, micromechanical applications, gyroscopes 35-18
Nanomechanical resonators, micromechanical applications, switches, filters, and mixers 35-19
Nanomechanical resonators, micromechanical applications, timing oscillator—mechanical clock 35-18 thru 35-19
Nanomechanical resonators, nanomechanical systems, basic science research 35-1
Nanomechanical resonators, nanomechanical systems, biomedical engineering 35-2
Nanomechanical resonators, nanomechanical systems, damped driven harmonic oscillator model 35-2 thru 35-3
Nanomechanical resonators, nanomechanical systems, damping and dissipation 35-4 35-6
Nanomechanical resonators, nanomechanical systems, elasticity theory, continuum mechanics 35-3 thru 35-5
Nanomechanical resonators, nanomechanical systems, noise analysis 35-7 thru 35-8
Nanomechanical resonators, nanomechanical systems, resonator design 35-8 thru 35-9
Nanomechanical resonators, nanomechanical systems, torsional resonator 35-2
Nanomechanical resonators, nanomechanical systems, two doubly clamped beams 35-1 thru 35-2
Nanoparticles, applications 30-1
Nanoparticles, biosensors 30-13
Nanoparticles, characteristics 30-2
Nanoparticles, direct writing techniques 30-3
Nanoparticles, direct writing techniques, dip-pen nanolithography 30-4 thru 30-6
Nanoparticles, direct writing techniques, e-beam lithography 30-6 thru 30-7
Nanoparticles, direct writing techniques, photolithography 30-7 thru 30-8
Nanoparticles, electronic properties 30-2 thru 30-3
Nanoparticles, gold 30-1
Nanoparticles, guided writing techniques, charge-based writing 30-8 thru 30-10
Nanoparticles, guided writing techniques, chemical modification, self-assembled monolayer 30-10 thru 30-11
Nanoparticles, guided writing techniques, microcontact printing 30-10
Nanoparticles, guided writing techniques, nanoshaving 30-8 30-9
Nanoparticles, memory element 30-13 thru 30-14
Nanoparticles, nanoelectronics 30-11 thru 30-13
Nanoparticles, SET 30-3 thru 30-4
Nanoparticles, surface area/volume ratio 30-2 30-3
Nanoparticles, transistor 30-1 thru 30-2
Nanoporous anodic oxides, applied potential 14-4
Nanoporous anodic oxides, barrier film growth and dissolution, cation and oxygen vacancies 14-18 thru 14-19
Nanoporous anodic oxides, barrier film growth and dissolution, chemical film dissolution reaction 14-18
Nanoporous anodic oxides, barrier film growth and dissolution, electric field strength 14-19
Nanoporous anodic oxides, barrier film growth and dissolution, nanopore nucleation 14-20
Nanoporous anodic oxides, barrier film growth and dissolution, partial current density 14-19
Nanoporous anodic oxides, barrier film growth and dissolution, relative reaction rate 14-19 thru 14-20
Nanoporous anodic oxides, barrier film growth and dissolution, steady-state current vs. potential curves 14-18
Nanoporous anodic oxides, barrier layer, local breakdown/thinning, anodic current 14-8
Nanoporous anodic oxides, barrier layer, local breakdown/thinning, Fick equations 14-7
Nanoporous anodic oxides, barrier layer, local breakdown/thinning, galvanostatic mode 14-6 thru 14-7
Nanoporous anodic oxides, barrier layer, local breakdown/thinning, optical models 14-8
Nanoporous anodic oxides, barrier layer, local breakdown/thinning, potentiostatic growth phases 14-6 thru 14-7
Nanoporous anodic oxides, barrier layer, local breakdown/thinning, thin and compact barrier-type oxide layer 14-6
Nanoporous anodic oxides, biochemical and biological applications 14-17 thru 14-18
Nanoporous anodic oxides, catalysis, photocatalysis, and solar cells 14-15 thru 14-16
Nanoporous anodic oxides, electrical and photoelectrical properties, absorption coefficient and bandgap 14-13
Nanoporous anodic oxides, electrical and photoelectrical properties, EIS 14-12
Nanoporous anodic oxides, electrical and photoelectrical properties, energy diagrams 14-13
Nanoporous anodic oxides, electrical and photoelectrical properties, optical absorption 14-14
Nanoporous anodic oxides, electrical and photoelectrical properties, photocurrent spectroscopic/transient techniques 14-12
Nanoporous anodic oxides, electrical and photoelectrical properties, surface charges 14-13
Nanoporous anodic oxides, electrical and photoelectrical properties, UV-Vis spectra, nanoporous films 14-14
Nanoporous anodic oxides, electrochemical dissolution, nonhomogeneous field strength 14-6
Nanoporous anodic oxides, electrolyte composition 14-4 thru 14-5
Nanoporous anodic oxides, electrolyte temperature 14-5
Nanoporous anodic oxides, humidity and gas sensors 14-16 thru 14-17
Nanoporous anodic oxides, nanomaterials and nanostructures deposition 14-14 thru 14-15
Nanoporous anodic oxides, nanopore nucleation and growth 14-20 thru 14-21
Nanoporous anodic oxides, nanotubular and nanocolumnar structures 14-1
Nanoporous anodic oxides, oxide film material, electrostatic stress 14-9
Nanoporous anodic oxides, oxide film material, electrostriction stress 14-8 thru 14-9
Nanoporous anodic oxides, oxide film material, film thickness, oxidized metal 14-10 thru 14-11
Nanoporous anodic oxides, oxide film material, flow model 14-10
Nanoporous anodic oxides, oxide film material, perturbation analysis 14-9 thru 14-10
Nanoporous anodic oxides, oxide film material, plasticity 14-10
Nanoporous anodic oxides, oxide film material, total strain energy density 14-9
Nanoporous anodic oxides, thickness and porosity 14-11 thru 14-12
Nanoporous anodic oxides, valve metals, current density 14-2
Nanoporous anodic oxides, valve metals, field-enhanced dissolution 14-4
Nanoporous anodic oxides, valve metals, galvanostatic regime 14-3
Nanoporous anodic oxides, valve metals, growth curves 14-3 thru 14-4
Nanoporous anodic oxides, valve metals, magnetic agitation 14-3
Nanoporous anodic oxides, valve metals, pore formation mechanism 14-4
Nanoporous anodic oxides, valve metals, porous oxide formation 14-2 thru 14-3
Nanoporous anodic oxides, valve metals, substrate composition 14-5 thru 14-6
Nanoporous carbons vs. metal-organic frameworks 41-12 thru 41-13
Nanoporous carbons, applications 41-2
Nanoporous carbons, HRTEM image 41-7
Nanoporous carbons, properties 41-7—41-8
Nanoporous materials, biological molecular isolation and purification 9-1
Nanoporous materials, classification 10-1
Nanoporous materials, classification, kinds, and properties 9-4 thru 9-6
Nanoporous materials, gas adsorption method, adsorption isotherms 9-5 thru 9-8
Nanoporous materials, gas adsorption method, pore parameter calculation 9-8 thru 9-9
Nanoporous materials, nanopore size and size distribution 9-9 thru 9-10
Nanoporous materials, pores, adsorbate-adsorbent interaction 9-2
Nanoporous materials, pores, definition 9-1
Nanoporous materials, pores, macropores, mesopores and micropores 9-2 thru 9-3
Nanoporous materials, pores, total potential energy 9-3
Nanoporous materials, pores, types 9-2
Nanoporous materials, pores, ultramicropores and supermicropores 9-3
Nanoporous materials, quantum size effect 9-1
Nanopositioning systems, actuators, coarse/fine long stroke assembly 8-2 thru 8-3
Nanopositioning systems, actuators, inchworm actuators 8-1 thru 8-2
Nanopositioning systems, actuators, inverse piezoelectric effect 8-2
Nanopositioning systems, actuators, leadscrew 8-1
Nanopositioning systems, applications 8-20 thru 8-21
Nanopositioning systems, multifunctional linear actuators, coarse/fine long-travel assembly 8-4
Nanopositioning systems, multifunctional linear actuators, experimental results 8-7 thru 8-8
Nanopositioning systems, multifunctional linear actuators, mathematical model 8-4 thru 8-5
Nanopositioning systems, multifunctional linear actuators, nonlinear compensation control 8-5 thru 8-7
Nanopositioning systems, multifunctional linear actuators, piezoelectric stack actuator 8-4
Nanopositioning systems, piezoelectric patch actuators see "Smart composite nanopositioning"
Nanopositioning systems, sensors 8-3 thru 8-4
Nanoscale luminescent sensors, carbon nanotubes 32-7 thru 32-8
Nanoscale luminescent sensors, local (evanescent) field detection, evanescent field 32-8 thru 32-9
Nanoscale luminescent sensors, local (evanescent) field detection, localized field image 32-9 thru 32-11
Nanoscale luminescent sensors, local (evanescent) field detection, surface plasmon polariton 32-11 thru 32-12
Nanoscale luminescent sensors, nanoscale thermometer heating, alternating excitation 32-14 thru 32-16
Nanoscale luminescent sensors, nanoscale thermometer measurement principle 32-13
Nanoscale luminescent sensors, nanoscale thermometer microelectronic device heating 32-13 thru 32-14
Nanoscale luminescent sensors, tip fabrication, nanomanipulation set up 32-8
Nanoscale luminescent sensors, tip fabrication, tungsten tip 32-8 32-9
Nanoscaled oscillators, oscillation, single-walled carbon nanotube, interaction energy 36-4 thru 36-6
Nanoscaled oscillators, oscillation, single-walled carbon nanotube, oscillatory behavior 36-6 thru 36-8
Nanoscaled oscillators, -nanotube oscillator 36-1
Nanoscaled oscillators, Appell’s hypergeometric functions 36-15 thru 36-16
Nanoscaled oscillators, double-walled carbon nanotubes, oscillation interaction energy 36-8 thru 36-10
Nanoscaled oscillators, double-walled carbon nanotubes, oscillatory behavior 36-10 thru 36-11
Nanoscaled oscillators, interaction energy, acceptance energy 36-3 thru 36-4
Nanoscaled oscillators, interaction energy, continuum approach 36-1 thru 36-2
Nanoscaled oscillators, interaction energy, interaction force 36-2
Nanoscaled oscillators, interaction energy, Lennard — Jones potential see "Lennard — Jones potential"
Nanoscaled oscillators, interaction energy, suction energy 36-4
Nanoscaled oscillators, multi-walled carbon nanotube 36-1
Nanoscaled oscillators, nanotubes oscillation in bundles, interaction energy 36-11 thru 36-13
Nanoscaled oscillators, nanotubes oscillation in bundles, oscillatory behavior 36-13 thru 36-14
Nanoscaled oscillators, oscillatory behavior 36-4
Nanoshaving 30-8 30-9
Negative nanoprinting 17-3
Niobium oxide matrices 14-17
Nitro and nitroso dyes 5-3
Noise equivalent temperature difference ( ) 34-13
Non-silica-based mesoporous materials 10-10
Nuclear magnetic resonance (NMR) 17-5
Optical plasmon resonance, dilute spectra, dielectric medium, core radius effects 2-15 thru 2-17
Optical plasmon resonance, dilute spectra, dielectric medium, medium effects 2-15
Optical plasmon resonance, dipole theory, Bruggeman EMA 2-15
Optical plasmon resonance, dipole theory, core-shell effect 2-14
Optical plasmon resonance, dipole theory, dilute dispersions 2-14 thru 2-15
Optical plasmon resonance, dipole theory, Maxwell — Garnet EMA 2-15
Optical plasmon resonance, dipole theory, metal core dielectric function 2-14
Optical plasmon resonance, thin film spectra 2-17
Optochemical nanosensors in vivo sensing/imaging/monitoring cancer 33-9
Optochemical nanosensors in vivo sensing/imaging/monitoring metabolites 33-10
Optochemical nanosensors in vivo sensing/imaging/monitoring NIR excitation 33-8
Optochemical nanosensors, bioanalytical and biomedical sensor 33-2 33-12
Optochemical nanosensors, chemical interference 33-1
Optochemical nanosensors, design using nanoparticle, incorporated enzyme and molecular probes 33-5
Optochemical nanosensors, design using nanoparticle, incorporated molecular probes 33-4 thru 33-5
Optochemical nanosensors, design using nanoparticle, ion-correlation sensing component 33-5
Optochemical nanosensors, design using nanoparticle, metallic nanosensors 33-6
Optochemical nanosensors, design using nanoparticle, optically silent analyte-sensitive ligands/receptors and analyte-insensitive fluorescent dyes 33-5
Optochemical nanosensors, design using nanoparticle, peroxalate nanoparticle sensor 33-6
Optochemical nanosensors, design using nanoparticle, QD sensors 33-6
Реклама