Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Sattler K.D. — Handbook of Nanophysics: Functional Nanomaterials
Sattler K.D. — Handbook of Nanophysics: Functional Nanomaterials



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Handbook of Nanophysics: Functional Nanomaterials

Автор: Sattler K.D.

Аннотация:

Handbook of Nanophysics: Functional Nanomaterials illustrates the importance of tailoring nanomaterials to achieve desired functions in applications. Each peer-reviewed chapter contains a broad-based introduction and enhances understanding of the state-of-the-art scientific content through fundamental equations and illustrations, some in color. This volume covers various composites, including carbon nanotube/polymer composites, printable metal nanoparticle inks, polymer�clay nanocomposites, biofunctionalized titanium dioxide-based nanocomposites, nanocolorants, ferroic nanocomposites, and smart composite systems. It also describes nanoporous materials, a giant nanomembrane, graphitic foams, arrayed nanoporous silicon pillars, nanoporous anodic oxides, metal oxide nanohole arrays, carbon clathrates, self-assembled monolayers, epitaxial graphene, and graphene nanoribbons, nanostructures, quantum dots, and cones. After focusing on the methods of nanoindentation and self-patterning, the book discusses nanosensors, nano-oscillators, and hydrogen storage. Nanophysics brings together multiple disciplines to determine the structural, electronic, optical, and thermal behavior of nanomaterials; electrical and thermal conductivity; the forces between nanoscale objects; and the transition between classical and quantum behavior. Facilitating communication across many disciplines, this landmark publication encourages scientists with disparate interests to collaborate on interdisciplinary projects and incorporate the theory and methodology of other areas into their work.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2011

Количество страниц: 790

Добавлена в каталог: 12.07.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Electron trapping, interference, heights of confinement potential      23-9
Electron trapping, interference, radius fluctuation ($\delta_R$)      23-10
Electron trapping, interference, resonance      23-8
Electron trapping, interference, sharp boundaries      23-7 thru 23-8
Electron trapping, interference, Taylor series      23-9 thru 23-10
Electron trapping, interference, time-independent solution      23-8
Electron trapping, tunneling barrier formation, classical turning points      23-5 thru 23-6
Electron trapping, tunneling barrier formation, electron angular momentum      23-5
Electron trapping, tunneling barrier formation, escape rate      23-6
Electron trapping, tunneling barrier formation, interlevel separation      23-6 thru 23-7
Electron trapping, tunneling barrier formation, semiclassical quantization      23-6
Electron trapping, tunneling barrier formation, transverse momentum      23-7
Electrostatic funneling      30-8 thru 30-9
Electrostatic sensor      37-10
Electrostatic technique, applications      35-17
Electrostatic technique, displacement vs. resonance frequency      35-12
Electrostatic technique, equation of motion      35-11
Electrostatic technique, equivalent electrical RLC circuit      35-13
Electrostatic technique, measurement setup      35-11
Electrostatic technique, output voltage      35-12
Ellipsometry      17-5
Endohedrally hydrogen-doped fullerenes, $(Li + nH_2)@C_{60}$      39-10
Endohedrally hydrogen-doped fullerenes, $Be@C_{120}$ structure      39-13 thru 39-14
Endohedrally hydrogen-doped fullerenes, $Be@C_{60}$      39-8 thru 39-9
Endohedrally hydrogen-doped fullerenes, $Be@C_{70}$      39-10 thru 39-11
Endohedrally hydrogen-doped fullerenes, $C_32$ cluster      39-7 thru 39-8
Endohedrally hydrogen-doped fullerenes, $Mg@C_{120}$ nanotube      39-11
Endohedrally hydrogen-doped fullerenes, $Se@C_{120}$ nanotube      39-11 thru 39-12
Endohedrally hydrogen-doped fullerenes, $Se@C_{60}$      39-8
Endohedrally hydrogen-doped fullerenes, hydrogen and fullerenes      39-1
Endohedrally hydrogen-doped fullerenes, hydrogen storage capacity, $C_{56}$ system      39-16 thru 39-17
Endohedrally hydrogen-doped fullerenes, hydrogen storage capacity, $C_{58}$ and its derivatives      39-14 thru 39-16
Endohedrally hydrogen-doped fullerenes, hydrogen storage capacity, $C_{60}$      39-6 thru 39-7
Endohedrally hydrogen-doped fullerenes, hydrogen storage capacity, $nH_2@C_{60}$ geometries and energies      39-4 thru 39-6
Endohedrally hydrogen-doped fullerenes, hydrogen storage capacity, hydrogenated $C_{60}$      39-17 thru 39-18
Endohedrally hydrogen-doped fullerenes, solid-state NMR studies      39-4
Endohedrally hydrogen-doped fullerenes, synthesis, $C_{70}$      39-3
Endohedrally hydrogen-doped fullerenes, synthesis, $H_2@C_{60}$      39-2 thru 39-3
Endohedrally hydrogen-doped fullerenes, synthesis, dihydrogen-encapsulated fullerenes      39-3 thru 39-4
Endohedrally hydrogen-doped fullerenes, synthesis, fullerene derivative      39-3
Epitaxial graphene, ballistic transport      19-9
Epitaxial graphene, Bernal stacking      19-1 19-5
Epitaxial graphene, carbon nanotube      19-2
Epitaxial graphene, crystal structure      19-1 thru 19-2
Epitaxial graphene, electronic structure, Dirac cones      19-5
Epitaxial graphene, electronic structure, electron waves      19-3 thru 19-4
Epitaxial graphene, electronic structure, Fermi level      19-4 thru 19-5
Epitaxial graphene, electronic structure, Fermions      19-4
Epitaxial graphene, electronic structure, pi-bonds      19-3
Epitaxial graphene, electronic structure, quantum mechanical $p_z$ orbital      19-3 thru 19-4
Epitaxial graphene, electronic structure, traveling waves      19-4
Epitaxial graphene, electronic structure, valence electrons      19-3
Epitaxial graphene, energy gap      19-8
Epitaxial graphene, exfoliated graphene      19-2
Epitaxial graphene, gate doping      19-9
Epitaxial graphene, inter-sheet van der Waals bonding      19-1
Epitaxial graphene, optical microscopic method      19-2
Epitaxial graphene, patterned graphene      19-9
Epitaxial graphene, properties      19-5 thru 19-6
Epitaxial graphene, silicon carbide, 4H and 6H structures      19-6
Epitaxial graphene, silicon carbide, C-face      19-6 thru 19-8
Epitaxial graphene, silicon carbide, chemically modified epitaxial graphene      19-8
Epitaxial graphene, silicon carbide, Si-face      19-6
Epitaxial graphene, two-dimensional electron gases      19-3
Epitaxial QDs      34-1
Equation of motion with applied current, angular momentum      38-10
Equation of motion with applied current, critical current      38-10
Equation of motion with applied current, effective damping      38-10 thru 38-11
Equation of motion with applied current, phase diagram      38-11 thru 38-12
Equation of motion with applied current, polar angle      38-11
Equation of motion with applied current, spin-transfer stabilized orbits      38-11 thru 38-12
Equation of motion with damping      38-9 thru 38-10
Equation of motion without damping, anisotropy energy      38-7 thru 38-8
Equation of motion without damping, effective field      38-6 thru 38-7
Equation of motion without damping, free layer moment      38-7
Equation of motion without damping, magnetostatic energy      38-7
Equation of motion without damping, resonant frequency      38-8 thru 38-9
Equation of motion without damping, torque      38-6
Ethylene vinyl acetate (EVA) copolymer      1-6
Euler’s law      16-8
Evanescent field      32-8 thru 32-9 see
Ferroic nanocomposites, depolarization field calculations, ambient potential      7-7
Ferroic nanocomposites, depolarization field calculations, dielectric anisotropy media      7-8
Ferroic nanocomposites, depolarization field calculations, dielectric particle      7-6
Ferroic nanocomposites, depolarization field calculations, dimensionless ratio      7-8
Ferroic nanocomposites, depolarization field calculations, dipole moment      7-8 thru 7-9
Ferroic nanocomposites, depolarization field calculations, equations of state      7-7
Ferroic nanocomposites, depolarization field calculations, partial screening      7-6
Ferroic nanocomposites, depolarization field calculations, polarization screening      7-8 thru 7-9
Ferroic nanocomposites, ferroelectric/ferromagnetic domain switching      7-1
Ferroic nanocomposites, Gibbs energy, spherical ferroelectric nanoparticle, equations of state      7-5
Ferroic nanocomposites, Gibbs energy, spherical ferroelectric nanoparticle, perovskite symmetry      7-4
Ferroic nanocomposites, Gibbs energy, spherical ferroelectric nanoparticle, spherical coordinate system      7-5
Ferroic nanocomposites, Gibbs energy, spherical ferroelectric nanoparticle, uniformly strained particles      7-6
Ferroic nanocomposites, Gibbs energy, spherical ferroelectric nanoparticle, uniformly stressed particles      7-5
Ferroic nanocomposites, inhomogeneous elastic strains      7-2
Ferroic nanocomposites, Landau — Ginzburg phenomenological approach      7-3
Ferroic nanocomposites, PFM      7-1 thru 7-2
Ferroic nanocomposites, phenomenological approach      7-3 thru 7-4
Ferroic nanocomposites, Raman spectra      7-2
Ferroic nanocomposites, strain and depolarization field, dielectric susceptibility      7-11
Ferroic nanocomposites, strain and depolarization field, dynamic response      7-10
Ferroic nanocomposites, strain and depolarization field, phase transition      7-10 thru 7-11
Ferroic nanocomposites, strain and depolarization field, quasi-static ferroelectric hysteresis loops      7-10 thru 7-11
Ferroic nanocomposites, strain and depolarization field, remnant polarization      7-10 7-12
Ferroic nanocomposites, strain and depolarization field, square-to-slim transition      7-10
Ferroic nanocomposites, strain and depolarization field, uniform electric field      7-10
Ferroic nanocomposites, strain- and size-induced effects      7-9
Ferroic nanocomposites, superparaelectric phase      7-3
Fick equations      14-7
Field-effect transistors, band-gap engineering, electronic transport      20-19 thru 20-20
Field-effect transistors, band-gap engineering, on-off state      20-18
Field-effect transistors, band-gap engineering, threshold voltage      20-18
Field-effect transistors, electronic versatility      20-13
Field-effect transistors, electrostatics and gating, density vs. $V_G$      20-15 thru 20-16
Field-effect transistors, electrostatics and gating, Hartree approximation      20-14 thru 20-15
Field-effect transistors, electrostatics and gating, ideal conductance vs. $V_G$      20-17
Field-effect transistors, electrostatics and gating, long-range interactions      20-14
Field-effect transistors, electrostatics and gating, self-consistent electronic structure      20-15
Field-induced oxidation (FIO)      30-11
Finite element analysis, Boussinesq — Love indentation problem      26-10
Finite element analysis, contact problems, friction, bipotential method      26-9
Finite element analysis, contact problems, friction, contact kinematics      26-7 thru 26-8
Finite element analysis, contact problems, friction, equilibrium equations      26-9
Finite element analysis, contact problems, friction, governing equations      26-7
Finite element analysis, contact problems, friction, nonlinear Gauss — Seidel-like algorithm      26-9 thru 26-10
Finite element analysis, contact problems, friction, Signorini conditions and Coulomb friction laws      26-8 thru 26-9
Finite element analysis, contact problems, friction, Uzawa algorithm      26-10
Finite element analysis, elastoplastic materials, finite strains, cumulated plastic strain      26-5 thru 26-6
Finite element analysis, elastoplastic materials, finite strains, Kuhn — Tucker condition      26-5
Finite element analysis, elastoplastic materials, finite strains, linear Prager kinematic hardening      26-6
Finite element analysis, elastoplastic materials, finite strains, radial return mapping      26-6 thru 26-7
Finite element analysis, elastoplastic materials, finite strains, total deformation gradient      26-6
Finite element analysis, nanoindentation      26-10 thru 26-11
Finite element analysis, nonlinear phenomena      26-5
Finite element method (FEM)      35-8
Fluorene dyes      5-4
Fluorescence lifetime      33-8 thru 33-9
Fluorescence resonance energy transfer (FRET) sensors      33-6
Fluorescent nanoparticles, fluoride materials, coprecipitation method      32-6 thru 32-8
Fluorescent nanoparticles, fluoride materials, glass-ceramics      32-5
Fluorescent nanoparticles, fluoride materials, glasses      32-4 thru 32-5
Fluorescent nanoparticles, fluoride materials, mechanosynthesis      32-5 thru 32-6
Fluorescent nanoparticles, fluoride materials, microemulsion method      32-6 thru 32-7
Fluorescent nanoparticles, fluoride materials, soft chemistry method      32-6
Fluorescent nanoparticles, inorganic luminescent material      32-1
Fluorescent nanoparticles, nanoscale luminescent sensors, local (evanescent) field detection      32-8 thru 32-12
Fluorescent nanoparticles, nanoscale luminescent sensors, nanoscale thermometer      32-13 thru 32-16
Fluorescent nanoparticles, nanoscale luminescent sensors, tip fabrication      32-8 32-9
Fluorescent nanoparticles, rare earth ions, energy transfers      32-3 thru 32-4
Fluorescent nanoparticles, rare earth ions, energy-level scheme      32-2
Focused ion beam (FIB) lithography      30-1 30-6 30-7
Food dyes      5-2
Fourier transform infrared (FTIR) spectrometer      34-8
Fourier transform infrared spectroscopy (FTIR)      7-2
FTIR spectrometer      34-8 thru 34-9
Full-width at half-maximum (FWHM)      1-10
Gamow’s vectors      23-8
Gas molecule collision noise      35-8
Gaseous hydrogen storage      41-3
Gauss — Bonnet theorem      16-8
Gaussian membership function      8-5 thru 8-6
Generalized-gradient approximations (GGA)      40-13 thru 40-14
Georgia Institute of Technology (GIT)      19-2
Giant magnetoresistance (GMR) device      38-1 thru 38-4
Giant nanomembrane, definition      11-1
Giant nanomembrane, fabrication, electrostatic layer-by-layer assembly      11-2
Giant nanomembrane, fabrication, gold foil      11-1
Giant nanomembrane, fabrication, Langmuir — Blodgett approach      11-2
Giant nanomembrane, fabrication, metal oxides      11-3
Giant nanomembrane, fabrication, organic and inorganic hybrids      11-3 11-5
Giant nanomembrane, fabrication, organic nanomembranes      11-3 thru 11-4
Giant nanomembrane, functional potentials      11-8
Giant nanomembrane, physical properties, electrical property      11-7
Giant nanomembrane, physical properties, macroscopic behavior and microscopic morphology      11-5 thru 11-6
Giant nanomembrane, physical properties, mechanical properties measurement      11-6 thru 11-7
Giant nanomembrane, physical properties, membrane robustness and crosslinking density      11-7
Giant nanomembrane, physical properties, thermal and chemical stabilities      11-7 thru 11-8
Gibbs free energy      16-19
Gigahertz oscillator      see "Nanoscaled oscillators"
Glass, energy transfers      32-3
Glass, fluorescence spectra      32-13
Glass, glass transition temperature      32-4
Glass, glass-ceramics synthesis      32-5
Glass, optical properties      32-4 thru 32-5
Glass, stability and synthesis      32-4
Glass, thermal analysis curve      32-6
Gold nanoparticles      2-17 thru 2-20
Grand canonical Monte Carlo (GCMC) simulation      40-11 40-14 40-25
Graphene and boron nitride single layers, $sp^2$ hybridization      18-16 thru 18-17
Graphene and boron nitride single layers, atomic structure, BN bond strength      18-3 thru 18-4
Graphene and boron nitride single layers, atomic structure, corrugated layers      18-5 thru 18-7
Graphene and boron nitride single layers, atomic structure, flat layers, domain boundaries      18-4 thru 18-5
Graphene and boron nitride single layers, atomic structure, lattice mismatch      18-3
Graphene and boron nitride single layers, chemical vapor deposition      18-2 thru 18-3
Graphene and boron nitride single layers, dielectric/metallic layer      18-1
Graphene and boron nitride single layers, electronic band structure, $\pi$ bands      18-18 thru 18-19
Graphene and boron nitride single layers, electronic band structure, $\sigma$ bands      18-19 thru 18-20
Graphene and boron nitride single layers, electronic band structure, Madelung energy      18-17
Graphene and boron nitride single layers, electronic band structure, two-dimensional honeycomb structure      18-17
Graphene and boron nitride single layers, electronic structure I, corrugated layers      18-8 thru 18-9
Graphene and boron nitride single layers, electronic structure I, flat layers, vertical polarization      18-7
Graphene and boron nitride single layers, electronic structure II, corrugated layers, $\sigma$ band splitting      18-10 thru 18-12
Graphene and boron nitride single layers, electronic structure II, flat layers      18-9 thru 18-10
Graphene and boron nitride single layers, inverted topography      18-2
Graphene and boron nitride single layers, segregation      18-3
Graphene and boron nitride single layers, sticking and intercalation      18-12 thru 18-13
Graphene and boron nitride single layers, templates, dN molecules      18-16
Graphene and boron nitride single layers, templates, h-BN/Rh(111) nanomesh      18-14 thru 18-15
Graphene and boron nitride single layers, templates, initial coverages and desorption energies      18-16
Graphene and boron nitride single layers, templates, super cell      18-14
Graphene and boron nitride single layers, templates, template unit cell geometry      18-14
Graphene and boron nitride single layers, templates, Xe/h-BN/Rh(111) vs. Xe/g/Ru(0001) TDS      18-14 thru 18-15
Graphene and boron nitride single layers, tunneling junctions      18-13 thru 18-14
Graphene cones, atomic and electronic structure models, Bloch waves and Dirac electrons      25-7 thru 25-8
Graphene cones, atomic and electronic structure models, DFT      25-6 thru 25-7
Graphene cones, atomic and electronic structure models, fundamentals      25-5 thru 25-6
Graphene cones, atomic and electronic structure models, molecular mechanics      25-6
Graphene cones, atomic and electronic structure models, tight-binding and the Hueckel model      25-7
Graphene cones, Bucky ball      25-2
Graphene cones, carbon chemistry      25-2
Graphene cones, conic radicals      25-16
Graphene cones, electronic properties, continuum models and TB results      25-13 thru 25-14
Graphene cones, electronic properties, DFT results      25-14
Graphene cones, electronic properties, LDOS and petal superstructures      25-12 thru 25-13
Graphene cones, electrorheological fluid      25-15 thru 25-16
Graphene cones, fullerenes      25-2
Graphene cones, geometry and topology constraints      25-2 thru 25-3
Graphene cones, geometry, topology and stability      25-9 thru 25-10
Graphene cones, hexagonal carbon network      25-1
Graphene cones, history      25-3 thru 25-5
Graphene cones, hydrogen storage      25-14 thru 25-15
Graphene cones, mechanical properties, Brenner — Tersoff potential      25-10 thru 25-11
Graphene cones, mechanical properties, elastic energy vs. indenter displacement      25-11 thru 25-12
Graphene cones, mechanical properties, Hooke’s law      25-10 thru 25-11
Graphene cones, mechanical properties, mechanical stress      25-11
Graphene cones, mechanical properties, Young’s modulus      25-10
Graphene cones, nucleation      25-16
Graphene cones, nucleation and growth mechanism      25-1
Graphene cones, pentagon road      25-16 thru 25-17
Graphene cones, substitutional atoms and tip functionalization      25-16
Graphene cones, synthesis and characterization      25-8 thru 25-9
Graphene nanoribbons, bipartite lattices      20-9
Graphene nanoribbons, Brillouin zone      20-4
Graphene nanoribbons, bulk graphene      20-2 thru 20-3
Graphene nanoribbons, charge neutrality point      21-11
Graphene nanoribbons, chemisorption      20-10
Graphene nanoribbons, condensed-matter quantum electrodynamics      20-1
Graphene nanoribbons, Coulomb blockade, nano constrictions      21-13 thru 21-14
Graphene nanoribbons, electron-electron interactions, armchair nanoribbons      20-7
Graphene nanoribbons, electron-electron interactions, defects and magnetism      20-11 thru 20-13
Graphene nanoribbons, electron-electron interactions, mean field Hubbard model      20-7
Graphene nanoribbons, electron-electron interactions, zigzag nanoribbons      20-7 thru 20-9
Graphene nanoribbons, energy gaps, bias direction      21-12
Graphene nanoribbons, energy gaps, edge roughness      21-11
Graphene nanoribbons, energy gaps, energy scales      21-12 thru 21-13
Graphene nanoribbons, energy gaps, source-drain current measurement      21-11 thru 21-12
Graphene nanoribbons, energy gaps, transport gap in back gate      21-12
Graphene nanoribbons, field-effect transistors      see "Field-effect transistors"
Graphene nanoribbons, hydrogen adsorption      20-9
Graphene nanoribbons, low source-drain bias vs. back-gate characteristics      21-10
Graphene nanoribbons, non-interacting theory, defects and magnetism      20-9 thru 20-11
Graphene nanoribbons, non-interacting theory, Dirac equation      20-5 thru 20-7
Graphene nanoribbons, non-interacting theory, tight-binding approximation      20-4 thru 20-5
Graphene nanoribbons, quasi-1D wire      20-3
Graphene nanoribbons, scanning force microscope images      21-10
Graphene nanoribbons, Schroedinger equation      20-2
Graphene nanoribbons, semiconducting behavior      21-9
Graphene nanoribbons, thermal fluctuation      20-1
Graphene nanoribbons, voids      20-9 thru 20-10
Graphene nanoribbons, zero-energy states      20-9 thru 20-10
Graphene nanostructures, $\pi$-electron system      21-1
Graphene nanostructures, direct backscattering      21-3
Graphene nanostructures, etching      21-8 thru 21-9
Graphene nanostructures, Fermi energy      21-1
Graphene nanostructures, mechanical exfoliation, graphite      21-6
Graphene nanostructures, nanodevice contacting      21-9
Graphene nanostructures, nanoribbons      see "Graphene nanoribbons"
Graphene nanostructures, pseudo-relativistic Klein tunneling      21-3
Graphene nanostructures, pseudospin      21-2
Graphene nanostructures, quantum dots      see "Graphene quantum dots"
Graphene nanostructures, quasi-particle spectrum      21-2 thru 21-3
Graphene nanostructures, single-layer graphene identification, Raman imaging      21-7 thru 21-8
Graphene nanostructures, single-layer graphene identification, visibility      21-6 thru 21-7
Graphene nanostructures, transport properties, electron density      21-4
Graphene nanostructures, transport properties, graphene gates      21-5 thru 21-6
Graphene nanostructures, transport properties, half-integer quantum Hall effect      21-5
Graphene nanostructures, transport properties, Hall bar geometries      21-3 thru 21-4
Graphene nanostructures, transport properties, minimum conductivity      21-5
Graphene nanostructures, transport properties, mobility      21-5
Graphene nanostructures, transport properties, zero-temperature conductivity      21-3
Graphene nanostructures, wave function      21-2 thru 21-3
Graphene quantum dots, charge detection, conductance      21-20
Graphene quantum dots, charge detection, Coulomb blockade resonances      21-19 thru 21-20
Graphene quantum dots, charge detection, integrated graphene device      21-18 thru 21-19
Graphene quantum dots, charge detection, large-scale current fluctuation      21-19
Graphene quantum dots, charge detection, spin-qubit and molecular states      21-18
Graphene quantum dots, electron trapping, interference      23-7 thru 23-11
Graphene quantum dots, electron trapping, tunneling barrier formation      23-5 thru 23-7
Graphene quantum dots, Klein’s paradox, continuum limit      23-1
1 2 3 4 5 6
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте