Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
Ìåõìàòÿíàì
square Ïåðâûé êóðñ

square Âòîðîé êóðñ

square Òðåòèé êóðñ

square ×åòâåðòûé êóðñ

square Ïÿòûé êóðñ
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
Êðàñîòà
blank
blank
Ðåçóëüòàò ïîèñêà

Ïîèñê êíèã, ñîäåðæàùèõ: Gaussian curvature



ÊíèãàÑòðàíèöû äëÿ ïîèñêà
Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics137, 139, 149
Chung T.J. — Computational fluid dynamics566
Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic611, 637, 643, 656, 659, 682ff, 686, 689
Olver P.J. — Equivalence, Invariants and Symmetry174, 272, 380, 384, 385
Babich V.M., Buldyrev V.S. — Short-wavelength diffraction theory241
Lee J.M. — Riemannian Manifolds: an Introduction to Curvature6, 142
Smith M.S. — Principles and Applications of Tensor Analysis72—75
Taylor G., Kleeman L. — Visual Perception and Robotic Manipulation: 3d Object Recognition, Tracking and Hand-Eye Coordinationsee “Curvature”
Debnath L. — Nonlinear water waves113—114
Leissa A. — Vibration of shells5
Safran S.A. — Statistical thermodynamics on surfaces, interfaces and membranes35, 38, 39, 186
Bryant R.L., Chern S.S., Gardner R.B. — Exterior differential systems192
Vojta P.A. — Diophantine Approximations and Value Distribution Theory49
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists394
Brown J.R. — Philosophy of Mathematics: An Introduction to a World of Proofs and Pictures41
Keen L., Lakic N. — Table of Contents Hyperbolic Geometry from a Local Viewpoint141
Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry18, 375
Akivis M., Goldberg V. — Differential Geometry of Varieties with Degenerate Gauss Maps149, 150
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration157
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1157
Chaikin P.M., Lubensky T.C. — Principles of condensed matter physics624, 625, 670
Polya G. — Problems and Theorems in Analysis: Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. GeometryIX 10 160, IX 15 160, 371
Gompper G., Schick M. — Self-Assembling Amphiphilic Systems97, 133, 143, 149, 162
Toda M., Kubo R., Saito N. — Statistical Physics I: Equilibrium Statistical Mechanics, Vol. 1184, 203
Volakis J.L., Chatterjee A., Kempel L.C. — Finite element method for elecromagnetics187
Coxeter H.S.M. — Introduction to Geometry352—356, 375
Frolov V.P., Novikov I.D. — Black Hole Physics: Basic Concepts and New Developments439
Carmo M.P. — Differential geometry of curves and surfaces146, 155
Lebedev L.P., Cloud M.J. — Tensor Analysis121
Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering465, 487, 515, 522
Gong S., Gong Y. — Concise Complex Analysis165
O'Neill B. — Elementary differential geometry203—207, 310—312, see also "individual surfaces"
Feodosiev V.I. — Advanced Stress and Stability Analysis391
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, Manifolds and Physics (vol. 2)321
Stephani H. — Relativity: an introduction to special and general relativity144
De Felice F., Clarke C.J.S. — Relativity on curved manifoldssee "Curvature"
Yano K. — Differential geometry on complex and almost complex spaces12
Libai A., Simmonds J.G. — The Nonlinear Theory of Elastic Shellssee “Curvature, Gaussian”
Kilmister C.W. — General theory of relativity16
Levi-Civita T. — The Absolute Differential Calculus (Calculus of Tensors)172
O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity81, 124
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds73, 119, 148, 195, 248
Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields77, 81, 84 257—258, 307, 400—401
Hughston L.P., Tod K.P., Bruce J.W. — An Introduction to General Relativity84
Eschenauer H., Olhoff N., Schnell W. — Applied structural mechanics : fundamentals of elasticity, load-bearing structures, structural optimization205, 208
Sternberg Sh. — Lectures on Differential Geometry266
Hans-Jürgen Stöckmann — Quantum Chaos: An Introduction330—331, 335
Dongming Wang — Elimination Practice: Software Tools and Applications167
Sokolnikoff I.S. — Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua168
Estrada R., Kanwal R.P. — A distributional approach to asymptotics theory and applications210
Hatfield B. — Quantum field theory of point particles and strings556—558
Weyl H. — Space, Time, Matter95
Arwini K. — Information Geometry: Near Randomness and Near Independence65
Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry18, 375
Weinberg S. — Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity9, 10, 144, 147—148, 383, 386
Bishop R.L., Crittenden R.J. — Geometry of manifolds(see Gauss curvature)
Farin G. — Curves and surfaces for computer aided geometric design355, 367
Carmeli M. — Classical Fields: General Gravity and Gauge Theory76
Landau L.D., Lifshitz E.M. — The classical theory of fields283
Alekseevskij D.V., Vinogradov A.M., Lychagin V.V. — Geometry I: Basic Ideas and Concepts of Differential Geometry28, 31, 47
Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology65, 98
Hermann R. — Differential geometry and the calculus of variations308, 362, 366
Sperb R.P. — Mathematics in Science and Engineering. Volume 157. Maximum principles and their applications49
Weeks J.R. — The shape of space181
Spivak M. — A Comprehensive Introduction to Differential Geometry. Volume 369, 198
Synge J.L. — Relativity: The general theory268, 290
Eddington A.S. — The mathematical theory of relativity82, 151
Kentaro Yano — Integral Formulas in Riemannian Geometry14
Chaikin P., Lubensky T. — Principles of condensed matter physics624, 625, 670
Thomas T.Y. — Concepts from Tensor Analysis and Differential Geometry90, 100
Hsiung C.-C. — A first course in differential geometrysee Curvature
Lane S.M. — Mathematics, form and function223, 227
Lemm J.M. — Mathematical elasticity. Theory of shells82, 83, 84, 121, 133
Eddington A.S. — Mathematical Theory of Relativity82, 151
Penrose R., Rindler W. — Spinors and space-time. Spinor and twistor methods in space-time geometry27, 374, 387, 400, 401, 404
Anderson J.L. — Principles of Relativity Physics64
Miller S.S., Mocanu P.T. — Differential subordinations: theory and applications355
Sapidis N.S. — Designing Fair Curves and Surfaces: Shape Quality in Geometric Modeling and Computer-Aided Design146
Zeidler E. — Oxford User's Guide to Mathematics783
Sperb R.P. — Maximum principles and their applications49
Yano K. — Integral Formulas in Riemannian Geometry14
Lord E., Wilson C. — The Mathematical Description of Shape and Form (Mathematics and Its Applications)28, 184
Flanders H. — Differential Forms with Applications to the Physical Sciences42, 118, 126
Smirnov A.L. — Asymptotic Methods in the Buckling Theory of Elastic Shells103, 104
Synge J. L. — Tensor Calculus96
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics396
Mac Lane S. — Mathematics: Form and Function223, 227
Griffiths P., Harris J. — Principles of algebraic geometry77
blank
HR
@Mail.ru
© Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01!| Valid CSS! Î ïðîåêòå