Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 137, 139, 149 |
Chung T.J. — Computational fluid dynamics | 566 |
Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | 611, 637, 643, 656, 659, 682ff, 686, 689 |
Olver P.J. — Equivalence, Invariants and Symmetry | 174, 272, 380, 384, 385 |
Babich V.M., Buldyrev V.S. — Short-wavelength diffraction theory | 241 |
Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 6, 142 |
Smith M.S. — Principles and Applications of Tensor Analysis | 72—75 |
Taylor G., Kleeman L. — Visual Perception and Robotic Manipulation: 3d Object Recognition, Tracking and Hand-Eye Coordination | see “Curvature” |
Debnath L. — Nonlinear water waves | 113—114 |
Leissa A. — Vibration of shells | 5 |
Safran S.A. — Statistical thermodynamics on surfaces, interfaces and membranes | 35, 38, 39, 186 |
Bryant R.L., Chern S.S., Gardner R.B. — Exterior differential systems | 192 |
Vojta P.A. — Diophantine Approximations and Value Distribution Theory | 49 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 394 |
Brown J.R. — Philosophy of Mathematics: An Introduction to a World of Proofs and Pictures | 41 |
Keen L., Lakic N. — Table of Contents Hyperbolic Geometry from a Local Viewpoint | 141 |
Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry | 18, 375 |
Akivis M., Goldberg V. — Differential Geometry of Varieties with Degenerate Gauss Maps | 149, 150 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 157 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 157 |
Chaikin P.M., Lubensky T.C. — Principles of condensed matter physics | 624, 625, 670 |
Polya G. — Problems and Theorems in Analysis: Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry | IX 10 160, IX 15 160, 371 |
Gompper G., Schick M. — Self-Assembling Amphiphilic Systems | 97, 133, 143, 149, 162 |
Toda M., Kubo R., Saito N. — Statistical Physics I: Equilibrium Statistical Mechanics, Vol. 1 | 184, 203 |
Volakis J.L., Chatterjee A., Kempel L.C. — Finite element method for elecromagnetics | 187 |
Coxeter H.S.M. — Introduction to Geometry | 352—356, 375 |
Frolov V.P., Novikov I.D. — Black Hole Physics: Basic Concepts and New Developments | 439 |
Carmo M.P. — Differential geometry of curves and surfaces | 146, 155 |
Lebedev L.P., Cloud M.J. — Tensor Analysis | 121 |
Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 465, 487, 515, 522 |
Gong S., Gong Y. — Concise Complex Analysis | 165 |
O'Neill B. — Elementary differential geometry | 203—207, 310—312, see also "individual surfaces" |
Feodosiev V.I. — Advanced Stress and Stability Analysis | 391 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, Manifolds and Physics (vol. 2) | 321 |
Stephani H. — Relativity: an introduction to special and general relativity | 144 |
De Felice F., Clarke C.J.S. — Relativity on curved manifolds | see "Curvature" |
Yano K. — Differential geometry on complex and almost complex spaces | 12 |
Libai A., Simmonds J.G. — The Nonlinear Theory of Elastic Shells | see “Curvature, Gaussian” |
Kilmister C.W. — General theory of relativity | 16 |
Levi-Civita T. — The Absolute Differential Calculus (Calculus of Tensors) | 172 |
O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 81, 124 |
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 73, 119, 148, 195, 248 |
Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 77, 81, 84 257—258, 307, 400—401 |
Hughston L.P., Tod K.P., Bruce J.W. — An Introduction to General Relativity | 84 |
Eschenauer H., Olhoff N., Schnell W. — Applied structural mechanics : fundamentals of elasticity, load-bearing structures, structural optimization | 205, 208 |
Sternberg Sh. — Lectures on Differential Geometry | 266 |
Hans-Jürgen Stöckmann — Quantum Chaos: An Introduction | 330—331, 335 |
Dongming Wang — Elimination Practice: Software Tools and Applications | 167 |
Sokolnikoff I.S. — Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua | 168 |
Estrada R., Kanwal R.P. — A distributional approach to asymptotics theory and applications | 210 |
Hatfield B. — Quantum field theory of point particles and strings | 556—558 |
Weyl H. — Space, Time, Matter | 95 |
Arwini K. — Information Geometry: Near Randomness and Near Independence | 65 |
Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry | 18, 375 |
Weinberg S. — Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity | 9, 10, 144, 147—148, 383, 386 |
Bishop R.L., Crittenden R.J. — Geometry of manifolds | (see Gauss curvature) |
Farin G. — Curves and surfaces for computer aided geometric design | 355, 367 |
Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 76 |
Landau L.D., Lifshitz E.M. — The classical theory of fields | 283 |
Alekseevskij D.V., Vinogradov A.M., Lychagin V.V. — Geometry I: Basic Ideas and Concepts of Differential Geometry | 28, 31, 47 |
Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology | 65, 98 |
Hermann R. — Differential geometry and the calculus of variations | 308, 362, 366 |
Sperb R.P. — Mathematics in Science and Engineering. Volume 157. Maximum principles and their applications | 49 |
Weeks J.R. — The shape of space | 181 |
Spivak M. — A Comprehensive Introduction to Differential Geometry. Volume 3 | 69, 198 |
Synge J.L. — Relativity: The general theory | 268, 290 |
Eddington A.S. — The mathematical theory of relativity | 82, 151 |
Kentaro Yano — Integral Formulas in Riemannian Geometry | 14 |
Chaikin P., Lubensky T. — Principles of condensed matter physics | 624, 625, 670 |
Thomas T.Y. — Concepts from Tensor Analysis and Differential Geometry | 90, 100 |
Hsiung C.-C. — A first course in differential geometry | see Curvature |
Lane S.M. — Mathematics, form and function | 223, 227 |
Lemm J.M. — Mathematical elasticity. Theory of shells | 82, 83, 84, 121, 133 |
Eddington A.S. — Mathematical Theory of Relativity | 82, 151 |
Penrose R., Rindler W. — Spinors and space-time. Spinor and twistor methods in space-time geometry | 27, 374, 387, 400, 401, 404 |
Anderson J.L. — Principles of Relativity Physics | 64 |
Miller S.S., Mocanu P.T. — Differential subordinations: theory and applications | 355 |
Sapidis N.S. — Designing Fair Curves and Surfaces: Shape Quality in Geometric Modeling and Computer-Aided Design | 146 |
Zeidler E. — Oxford User's Guide to Mathematics | 783 |
Sperb R.P. — Maximum principles and their applications | 49 |
Yano K. — Integral Formulas in Riemannian Geometry | 14 |
Lord E., Wilson C. — The Mathematical Description of Shape and Form (Mathematics and Its Applications) | 28, 184 |
Flanders H. — Differential Forms with Applications to the Physical Sciences | 42, 118, 126 |
Smirnov A.L. — Asymptotic Methods in the Buckling Theory of Elastic Shells | 103, 104 |
Synge J. L. — Tensor Calculus | 96 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 396 |
Mac Lane S. — Mathematics: Form and Function | 223, 227 |
Griffiths P., Harris J. — Principles of algebraic geometry | 77 |