Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 52 |
Bartle R.G. — The Elements of Integration | 80 |
Shorack G.R. — Probability for statisticians | 15, 83 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 270.D 310.I 381.A |
Dodge C.W. — Sets, logic & numbers | 3, 47 |
Peebles P.Z. — Probability, random variables, and random signal principles | 3 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 124 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 124 I |
Berkovitz L.D. — Convexity and Optimization in Rn | 4—5 |
MacLane S., Moerdijk L. — Sheaves in Geometry and Logic | 332, 337 |
Vaeth M. — Volterra and integral equations of vector functions | 36 |
Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 26, 86 |
Brin M., Stuck G. — Introdution to dynamical system | 69 |
Loeve M. — Probability Theory (part 2) | 91, 112 |
Heikkila S., Lakshmikantham V. — Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations | 36 |
Dodge C.W. — Foundations of algebra and analysis | 3, 47 |
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 54 |
Mendelson B. — Introduction to Topology | 5 |
Kay S.M. — Intuitive Probability and Random Processes using MATLAB | see “Empty set” |
Kurtz D.S., Swartz C.W. — Theories of Integration | 41, 68 |
Velleman D.J. — How to Prove It: A Structured Approach | 32 |
Pfeffer W.F., Fulton W. (Ed) — Riemann Approach to Integration: Local Geometric Theory | 117, 215 |
Hasumi M. — Hardy Classes on Infinitely Connected Riemann Surfaces | XI.1A |
Resnick S.I. — A probability path | 66 |
Loeve M. — Probability Theory (part 1) | 91, 112 |
Light W.A., Cheney E.W. — Approximation Theory in Tensor Product Spaces | 113 |
Dugunji J. — Topology | 2, 19 |
Berberian S.K. — Fundamentals of Real Analysis | 156 |
Nagashima H., Baba Y. — Introduction to chaos: physics and mathematics of chaotic phenomena | 24, 122 |
Ross S. — A First Course in Probability | 54 |
Wapner L. — The Pea and the Sun: A Mathematical Paradox | 71, 176 |
Hein J.L. — Discrete Mathematics | 11 |
Spivak M. — Calculus | 23 |
Royden H.L. — Real Analysis | 233 |
Spiegel M.R., Stephens L.J. — Schaum's outline of theory and problems of statistics | 133 |
Li M., Vitanyi P. — An introduction to Kolmogorov complexity and its applications | 140 |
Royden H.L. — Real Analysis | 233 |
Boas R.P. — A Primer of Real Functions | 209 |
Ito K. — Encyclopedic Dictionary of Mathematics | 270.D, 310.I, 381.A |
Lipschutz S.Ph.D. — Schaum's outline of theory and problems of finite mathematics | 36 |
Taylor J.C. — An Introduction to Measure and Probability | 104, see also Null function |
National Council of Teachers of Mathematics — Historical Topics for the Mathematics Classroom Thirty-First Yearbook | 284 |
Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 52 |
Weir A.J. — Lebesgue Integration and Measure | 18, 77 |
Hein J.L. — Discrete Structures, Logic, and Computability | 11 |
Lipschutz S. — Schaum's Outline of Probability | 1 |
Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 191 |
Hein J.L. — Theory of Computation: An Introduction | 9 |
Charalambides C.A. — Enumerative Combinatorics | 3 |
Christofides N. — Graph-Theory: an Algorithmic Approach | 1 |
Mac Lane S., Birkhoff G.D. — Algebra | 2 |
Hungerford T.W. — Algebra | 3 |
Wilkinson L., Wills G., Rope D. — The Grammar aof Graphics | 25 |
Spiegel M.R. — Schaum's outline of theory and problems of probability and statistics | 2 |
Durrett R. — Probability: Theory and Examples | 478 |
Williamson J.H. — Lebesgue Integration | 31 |
Thron W. — Introduction to the theory of functions of a complex variable | 3 |
Ryser H.J. — Combinatorial Mathematics | 4 |
Rogosinski W.W. — Volume and integral | 1.3 |
Aliprantis C. — Principles of real analysis | 104 |
Gleason A. — Fundamentals of Abstract Analysis | 3 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 1 |
Myler H.R., Weeks A.R. — Computer imaging recipes in C | 108, 113, 131, 128, 130, 135, 157 |
Kuratowski K. — Introduction To Set Theory & Topology | 26 |
Gelbaum B.R. — Problems in Real and Complex Analysis | 1.2. 11, 4.2. 45 |
Loomis L.H. — An introduction to abstract harmonic analysis | 35 |
Rudin W. — Function theory in polydiscs | 132 |
Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 122 |
Giarratano J.C., Riley G.D. — Expert Systems: Principles and Programming | 80 |
Lane S.M. — Mathematics, form and function | 28, 95, 363 |
Mott J.L., Kandel A., Baker T.P. — Discrete Mathematics For Computer Scientists And Mathematicians | 4 |
Constantinescu C. — Duality in Measure Theory | 7 |
Mott J., Kandel A., Baker T. — Discrete mathematics for computer scientists and mathematicians | 4 |
Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2 | see also "Null function" |
Bear H.S. — A Primer of Lebesgue Integration | 109, 112 |
Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 1 |
Partee B.H., Meulen A.T., Wall R.E. — Mathematical Methods in Linguistics | 4, 10, 19, 21, 123, 189 |
Herstein I.N. — Topics in algebra | 2 |
Cohen G.L. — A Course in Modern Analysis and Its Applications | 6 |
Pier J.-P. — Mathematical Analysis during the 20th Century | 70 |
Blumenthal R.K., Getoor R.M. — Markov processes and potential theory | 79 |
De Barra G — Measure theory and integration | 134 |
Elliott Mendelson — Introduction to mathematical logic | 5, 175 |
Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs) | see also "Null function" |
Guggenheimer H.W. — Plane geometry and its groups | 2 |
Gill A. — Applied Algebra for the Computer Sciences | 2 |
Hill F.J., Peterson G.R. — Computer Aided Logical Design with Emphasis on VLSI | 39 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 1 |
Hogg R.V., Craig A.T. — Introduction to Mathematical Statistics | 5, 13 |
Keith Devlin — Mathematics: The New Golden Age | 48 |
Truss J.K. — Foundations of Mathematical Analysis | 277 |
Lindstrum A.O. — Abstract algebra | 3 |
Truss J. — Foundations of mathematical analysis | 277 |
J. K. Truss — Foundations of mathematical analysis MCet | 277 |