| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Kharazishvili A.B. — Strange functions in real analysis | |
| Garrett P. — Buildings and Classical Groups | 17.7 |
| Olver P.J. — Equivalence, Invariants and Symmetry | 445 |
| Baker A. — Matrix Groups: An Introduction to Lie Group Theory | 12 |
| Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 16 |
| Pareigis B. — Categories and functors | 155 |
| Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 16 I (always $T_0$ after page 83 I) |
| Lee J.M. — Introduction to Smooth Manifolds | 30 |
| Lefschetz S. — Algebraic topology | 41 |
| Mimura M., Toda H. — Topology of Lie Groups, I and II | 5, 75 |
| Lee J.M. — Introduction to Topological Manifolds | 58 |
| Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 339 |
| Brin M., Stuck G. — Introdution to dynamical system | 4, 95 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 2, 4—5, 517, 518 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 377, 519 |
| Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 9 |
| Halmos P.R. — Measure Theory | 6 |
| Lorenz F., Levy S. — Algebra, Volume I: Fields and Galois Theory | 127 |
| Mill J.V. — The Infinite-Dimensional Topology of Function Spaces | 1, 37, 60, 182, 215, 462 |
| Hida H., Fulton W. (Ed) — Modular Forms and Galois Cohomology | 24 |
| Thomas Ch.B. — Representations of Finite and Lie Groups | 1, 63 |
| Stenstroem B. — Ring of quotients. Introduction to methods of ring theory | 143 |
| Reid M., Szendroi B. — Geometry and Topology | 143—144, 159 |
| Hatcher A. — Algebraic Topology | 281 |
| Jones G.A., Singerman D. — Complex Functions: An Algebraic and Geometric Viewpoint | 60 |
| Hirzebruch F. — Topological Methods in Algebraic Geometry | 39 |
| Husemoller D. — Fibre Bundles | 40 |
| James I.M. — Topological and Uniform Spaces | 36—40, 45, 55, 64, 75, 78, 82, 85, 88—91, 94, 98—102, 105, 107, 117, 119, 125, 126 |
| Freyd P. — Abelian categories. Introduction to theory of functors | 63 |
| Lima E.L. — Fundamental Groups and Covering Spaces | 48 |
| Morris S.A. — Topology without tears | 159 |
| Ratcliffe J.G. — Foundations of Hyperbolic Manifolds | 145 |
| Geroch R. — Mathematical physics | 234 |
| Rudin W. — Functional analysis | 122 |
| Wilson J.S. — Profinite groups | 6 ff. |
| Brickell F., Clark R.S. — Differentiable Manifolds | 212 |
| Petrich M. — Rings and Semigroups | 114 |
| Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 277 |
| Lang S. — Real Analysis | 421 |
| Nagel R., Derdinger R., Günther P. — Ergodic theory in the perspective of functional analysis | D/1 |
| Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 376, 383, 392 |
| Dieudonne J.A. — Treatise on Analysis, Vol. 2 | 12.8 |
| Simon B. — Representations of Finite and Compact Groups | 2, 121 |
| Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 789 |
| Brocker Th., Dieck T.T. — Representations of Compact Lie Groups | 29 |
| Jacobs B. — Categorical Logic and Type Theory | 408 |
| Bingham N.H., Goldie C.M., Teugels J.L. — Regular variation | 423 |
| Kirillov A.A. — Elements of the Theory of Representations | 22 |
| Sternberg Sh. — Lectures on Differential Geometry | 231 |
| Hu S.-T. — Elements of real analysis | 152 |
| Munkres J. — Topology | 145 |
| Silverman J.H. — Advanced Topics in the Arithmetic of Elliptic Curves | 85, 119 |
| Janich K. — Topology | 25, 34 |
| Hu S.-T. — Elements of general topology | 174 |
| Stenstrom B. — Rings of quotients: an introduction to methods of ring theory | 143 |
| Li H., Gras G. — Class Field Theory: From Theory to Practice | 30, 50, 51, 53 |
| Corduneanu C., Gheorghiu N., Barbu V. — Almost Periodic Function | 189, 210 |
| Aczel J., Dhombres J. — Functional equations in several variables with applications to mathematics, information theory and to the natural and social sciences | 65, 92, 101, 102, 108, 112, 113, 149, 151, 155, 237, 263, 284, 340 |
| Nagata M. — Field Theory | 156 |
| Clemens C.H. — Scrapbook of Complex Curve Theory | 43 |
| Steeb W.- H. — Problems and Solutions in Introductory and Advanced Matrix Calculus | 195 |
| Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 57, 63, 75, 84 |
| Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | 801 |
| Fried M.D., Jarden M. — Field Arithmetic | 4 |
| Price J.F. — Lie groups and compact groups | 160 |
| Conway J.B. — A Course in Functional Analysis | 159 |
| Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 308 |
| Dold A. — Lectures on Algebraic Topology | 196 |
| Fantechi B., Gottsche L., Illusie L. — Fundamental Algebraic Geometry. Grothendieck's FGA Explained MAg | 18 |
| Grosche C. — Path integrals, hyperbolic spaces, and Selberg trace formulae | 164 |
| Goffman C., Pedrick G. — First course in functional analysis | 251 |
| Brickell F., Clark R.S. — Differentiable manifolds | 212 |
| Kuratowski K. — Topology. Volume II | 386 |
| Hu S.T. — Introduction to general topology | 164 |
| Aliprantis C. — Principles of real analysis | 362 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 21 |
| Cohn P.M. — Lie Groups | 30 |
| Hausner M., Schwartz J.T. — Lie groups, Lie algebras | 19 |
| Munkres J.R. — Topology: A First Course | 144 |
| Fantechi B., Kleiman S.L., Illusie L. — Fundamental Algebraic Geometry | 18 |
| Gelbaum B.R. — Problems in Real and Complex Analysis | 2.1. 15, 2.3. 29 |
| Loomis L.H. — An introduction to abstract harmonic analysis | 108 |
| Porteous I.R. — Clifford Algebras and the Classical Groups | 225 |
| Bachman G. — Elements of Abstract Harmonic Analysis | 98 |
| Silverman J. — The arithmetic of dynamical systems | 8 |
| Pommaret J.F. — Systems of partial differential equations and Lie pseudogroups | 6.1.6 |
| Lane S.M. — Mathematics, form and function | 33 |
| Wagon S. — The Banach-Tarski Paradox | 30, 140, 144, 151, 160, 162—163, 173, 198 |
| Howes N.R — Modern Analysis and Topology | 271 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 2, 4—5, 517, 518 |
| Pier J.-P. — Mathematical Analysis during the 20th Century | 38 |
| Geroch R. — Mathematical physics | 234 |
| Morris S. — Pontryagin Duality and the Structure of Locally Compact Abelian Groups | 1 |
| James I.M. (ed.) — Topological and Uniform Spaces | 36—40, 45, 55, 64, 75, 78, 82, 85, 88—91, 94, 98—102, 105, 107, 117, 119, 125, 126 |
| Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 30 |
| Zorich V.A., Cooke R. — Mathematical analysis II | 72, 336 |
| Zorich V. — Mathematical Analysis | 72, 336 |
| Sagle A. A. — Introduction to Lie groups and Lie algebras | 90 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 21 |
| Mac Lane S. — Mathematics: Form and Function | 33 |
| Geroch R. — Mathematical physics | 234 |