| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | 
| Kharazishvili A.B. — Strange functions in real analysis |  | 
| Bartle R.G. — The Elements of Real Analysis | 23 | 
| Rudin W. — Principles of Mathematical Analysis | 25 | 
| Apostol T.M. — Calculus (vol 2) | 502 | 
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 49.A | 
| Grimaldi R.P. — Discrete and combinatorial mathematics. An introduction | 309, A-27, A-29, A-37 | 
| Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 4, 32, 41 | 
| Yale P.B. — Geometry and Symmetry | 87 | 
| Kisacanin B. — Mathematical problems and proofs. Combinatorics, Number theory, and Geometry | 12 | 
| Apostol T.M. — Mathematical Analysis | 39 | 
| Baker A. — Algebra and Number Theory | 55 | 
| Peebles P.Z. — Probability, random variables, and random signal principles | 3 | 
| Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 2 | 
| Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 2 I | 
| Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 7 | 
| Diestel R. — Graph theory | 357 | 
| Kay S.M. — Intuitive Probability and Random Processes using MATLAB | 43 | 
| Halmos P.R., Givant S. — Logic as Algebra | 56 | 
| Velleman D.J. — How to Prove It: A Structured Approach | 310 | 
| Balakrishnan N., Nevzorov V.B. — A Primer on Statistical Distributions | 16 | 
| Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | See denumerable set. | 
| Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 3 | 
| Pfeffer W.F., Fulton W. (Ed) — Riemann Approach to Integration: Local Geometric Theory | 3 | 
| James I.M. — Topological and Uniform Spaces | 8, 23, 52, 69, 128, 136—138 | 
| Gohberg I., Goldberg S. — Basic Operator Theory | 265 | 
| Hrbacek K., Jech T. — Introduction to Set Theory | 74 | 
| Dugunji J. — Topology | 47 | 
| Berberian S.K. — Fundamentals of Real Analysis | 38 | 
| Nagashima H., Baba Y. — Introduction to chaos: physics and mathematics of chaotic phenomena | 119 | 
| Morris S.A. — Topology without tears | 165 | 
| Sipser M. — Introduction to the theory of computation | 175 | 
| Mumford D., Wright D., Series C. — Indra's Pearls: The Vision of Felix Klein | 129, 155 | 
| Khuri A.I. — Advanced calculus with applications in statistics | 6 | 
| Royden H.L. — Real Analysis | 9, 19 | 
| Marker D. — Model theory: An introduction | 318 | 
| Hopcroft J.E., Motwani R., Ullman J.D. — Introduction to Automata Theory, Languages, and Computation | 310 | 
| Royden H.L. — Real Analysis | 9, 19 | 
| Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 13 | 
| Ito K. — Encyclopedic Dictionary of Mathematics | 49.A | 
| Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 163, 334 | 
| Kolman B., Busby R.C., Cutler S.C. — Discrete Mathematical Structures | 17 | 
| Weir A.J. — Lebesgue Integration and Measure | 15 | 
| Intriligator M.D., Arrow K.J. — Handbook of Mathematical Economics (vol. 1) | 24—25 | 
| Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 10 | 
| Aho A.V., Ullman J.D. — The Theory of Parsing, Translation, and Compiling, Volume 1: Parsing | 11, 14 | 
| Hu S.-T. — Elements of real analysis | 28 | 
| Munkres J. — Topology | 45 (see also “Countability”) | 
| D'Angelo J.P., West D.B. — Mathematical Thinking: Problem-Solving and Proofs | 89, 92, 4, 98, 161, 167, 256, 266, 8, 270, 290, 387 | 
| Conway J.H. — The Book of Numbers | 278-279 | 
| Bertsekas D.P. — Dynamic programming and optimal control (Vol. 1) | 330 | 
| Jategaonkar A.V. — Localization in Noetherian Rings | xii | 
| Lackzovich M. — Conjecture and Proof | 59 | 
| Kurosh A. — Higher Algebra | 352 | 
| Saxe K. — Beginning functional analysis | 186 | 
| Wilkinson L., Wills G., Rope D. — The Grammar aof Graphics | 26 | 
| Lewis H.R., Papadimitriou C.H. — Elements of the Theory of Computation | 21 | 
| Williamson J.H. — Lebesgue Integration | 4 | 
| Seymour L. — Schaum's Outline of Theory and Problems of Discrete Math | 62 | 
| Kreyszig E. — Introductory functional analysis with applications | 612 | 
| Klaas  G., Leedham-Green C.R., Plesken W. — Linear Pro-p-Groups  of Finite Width | III.6.4, R.7.7 | 
| Aliprantis C. — Principles of real analysis | 9 | 
| Gleason A. — Fundamentals of Abstract Analysis | 143 | 
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 3 | 
| Birkhoff G., Mac Lane S. — A Survey of Modern Algebra | 384, 436 | 
| Munkres J.R. — Topology: A First Course | 46, see also “Countability” | 
| Hartman S., Mikusinski J. — The theory of Lebesgue measure and integration | 13 | 
| McShane E.J., Botts T.A. — Real Analysis | 5 | 
| Kuratowski K. — Introduction To Set Theory & Topology | 62 | 
| Grimmett G., Welsh D. — Probability: An Introduction | 6 | 
| Hopcroft J.E., Ullman J.D. — Introduction to automata theory, languages, and computation | 6 | 
| Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 22 | 
| Gries D. — A Logical Approach to Discrete Math | 466 | 
| Aho A.V., Ullman J.D. — The Theory of Parsing, Translation, and Compiling. Volume II: Compiling | 11, 14 | 
| Lipschutz S., Lipson M.L. — Schaum's outline of theory and problems of discrete mathematics | 62 | 
| Du D.-Z., Ko K.-I. — Theory of computational complexity | 28 | 
| Daepp U., Gorkin P. — Reading, writing and proving. Close look at mathematics | 271 | 
| Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 5, 11, 12 | 
| Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 502 | 
| Grimaldi R.P., Rothman D.J. — Discrete and Combinatorial Mathematics: An Applied Introduction | 164, 303, A-24—A-32 | 
| James I.M. (ed.) — Topological and Uniform Spaces | 8, 23, 52, 69, 128, 136—138 | 
| De Barra G — Measure theory and integration | 22 | 
| Sipser M. — Introduction to the Theory of Computation | 161 | 
| Gill A. — Applied Algebra for the Computer Sciences | 65 | 
| Falconer K. — Fractal geometry: mathematical foundations and applications | 4, 32, 41 | 
| Kolman B., Busby R.C., Ross S. — Discrete Mathematical Structures | 18 | 
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 3 | 
| Epps T. — Quantitative Finance: Its Development, Mathematical Foundations, and Current Scope | 15, 29 | 
| Grimaldi R.P. — Student Solutions Manual for Discrete and Combinatorial Mathematics | 164, 303, A-24—A-32 | 
| D'Angelo J.P., West D.B. — Mathematical thinking: problem-solving and proofs | 89, 92—94, 98, 161, 167, 256, 266—268, 270, 290, 387 | 
| Keith Devlin — Mathematics: The New Golden Age | 43 | 
| Apostol T. — Mathematical Analysis, Second Edition | 39 | 
| Shoenfield J.R. — Mathematical Logic | 255 | 
| Klein E. — Mathematical methods in theoretical economics | 48 | 
| Whyburn G.T. — Topological analysis | 3 | 
| Hrbacek K., Jech T. — Introduction to Set Theory, Third Edition, Revised, and Expanded (Pure and Applied Mathematics (Marcel Dekker)) | 74 |