Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Aho A.V., Ullman J.D. — The Theory of Parsing, Translation, and Compiling, Volume 1: Parsing
Aho A.V., Ullman J.D. — The Theory of Parsing, Translation, and Compiling, Volume 1: Parsing



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: The Theory of Parsing, Translation, and Compiling, Volume 1: Parsing

Àâòîðû: Aho A.V., Ullman J.D.

Àííîòàöèÿ:

This book is intended for a one or two semester course in compiling theory at the senior or graduate level. It is a theoretically oriented treatment of a practical subject. Our motivation for making it so is threefold.

In an area as rapidly changing as Computer Science, sound pedagogy demands that courses emphasize ideas, rather than implementation details. It is our hope that the algorithms and concepts presented in this book will survive the next generation of computers and programming languages, and that at least some of them will be applicable to fields other than compiler writing.

Compiler writing has progressed to the point where many portions of a compiler can be isolated and subjected to design optimization. It is important that appropriate mathematical tools be available to the person attempting this optimization.

Some of the most useful and most efficient compiler algorithms, e.g. LR(k) parsing, require a good deal of mathematical background for full understanding. We expect, therefore, that a good theoretical background will become essential for the compiler designer.

While we have not omitted difficult theorems that are relevant to compiling, we have tried to make the book as readable as possible. Numerous examples are given, each based on a small grammar, rather than on the large grammars encountered in practice. It is hoped that these examples are sufficient to illustrate the basic ideas, even in cases where the theoretical developments are difficult to follow in isolation.


ßçûê: en

Ðóáðèêà: Computer science/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1972

Êîëè÷åñòâî ñòðàíèö: 542

Äîáàâëåíà â êàòàëîã: 10.12.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
(1,1)-bounded-right-context grammar/language      429—430 448
(2,1)-precedence grammar      426 448
Aanderaa, S.D.      34
Acceptance      96 (see also “Final configuration”)
Accessible state      117 125—126
Accumulator      65
Ackley, S.I.      263
Action function      374 392
Adjacency matrix      47—51
Aho, A.V.      102—103 192 251 399 426
Algol      198—199 234 281 489—490 501
Algorithm      27—36
Alphabet      15
Alternates (for a nonterminal)      285 457
Ambiguous grammar      143 163 202—207 281 489—490
Ancestor      39
Antisymmetric relation      10
Arbib, M.A.      138
ARC      see “Edge”
Arithmetic expression      86
Arithmetic progression      124 209
Assembler      59 74
Assembly language      65—70
assignment statement      65—70
Asymmetric relation      9
atom      1—2
Augmented grammar      372—373 427—428
Automaton      see “Recognizer” “Transducer”
Axiom      19—20
Backtrack parsing      281—314 456—500
Backus — Naur form      58 (see also “Context-free grammar”)
Backus, J.W.      76
Backwards determinism      see “Unique invertibility”
Bar-Hillel, Y.      82 102 211
Barnett, M.P.      237
Bauer, F.L.      455
Bauer, H.      426
Becker, S.      426
Berge, C.      52
Bijection      10
Birman, A.      485
Blaitner, M.      211
BNF      see “Backus — Naur form”
Bobrow, D.G.      82
Book, R.V.      103 211
bookkeeping      59 62—63 74 255
Boolean algebra      23—24 129
Booth, T.L.      138
Border (of a sentential form)      334 369
Borodin, A.      36
Bottom-up parsing      178—184 268—271 301—307 485—500 “Floyd “LR(k) “Precedence
Bounded context grammar/language      450—452
Bounded-right-context grammar/language      427—435 448 451—452
BRC      see “Bounded-right context”
Brooker, R.A.      77 313
Brzozowski, J.A.      124 138
Canonical collection of sets of valid items      389—391
Canonical LR(k) parser      393—396
Canonical set of LR(k) tables      393—394
Cantor, D.G.      211
Cardinality (of a set)      11 14
Cartesian product      5
Catalan number      165
CFG      see “Context-free grammar”
CFL      see “Context-free language”
Characteristic function      34
Characterizing language      238—243 251
Cheatham, T.E.      58 77 280 314
Chomsky grammar      29 (see also “Grammar”)
Chomsky hierarchy      92
Chomsky normal form      150—153 243 276—277 280 314 362
Chomsky, N.      29 58 82 102 124 166 192 211
Christensen, C.      58
Church — Turing thesis      29
Church, A.      25 29
Circuit      see “Cycle”
Closed portion (of a sentential form)      334 369
Closure of a language      17—18 197
Closure of a set of valid items      386
Closure, reflexive and transitive      8—9
Closure, transitive      8—9 47—50 52
CNF      see “Chomsky normal form”
Cocke — Younger — Kasami algorithm      281 314—320
Cocke, J.      76 332
Code Generation      59 65—70 72 74
Code optimization      59 70—72
Cohen, R.S.      500
Colmerauer grammar      492 497—500
Colmerauer precedence relations      490—500
Colmerauer, A.      500
Commutative law      71
Compiler      53—77 (see also “Bookkeeping” “Code “Code “Error “Lexical “Parsing”)
Compiler-compiler      77
Complementation      4 189—190 197 208 484
Completely specified finite automaton      117
Composition (of relations)      13 250
Computational complexity      27—28 208 210 297—300 316—320 326—328 356 395—396 473—476
Concatenation      15 17 197 208—210
Configuration      34 95 113—114 168—169 224 228 290 303 338 477 488
Conflict, precedence      see “Precedence conflict”
Congruence relation      134
Consistent set of items      391
Constant      254
Context-free grammar/language      91—93 97 99 101 208 399
Context-sensitive grammar/language      91—93 97 99 101 208 399
Continuing pushdown automaton      188
Conway, R.W.      77
Cook, S.A.      34 192
Correspondence problem      see “Post’s correspondence problem”
Countable set      11 14
Cover, grammatical      see “Left cover” “Right
CSG      see “Context-sensitive grammar”
CSL      see “Context-sensitive language”
Culik, K.H.      368 500
Cut (of a parse tree)      140—141
CYCLE      39
Cycle-free grammar      150 280 302—303 307
D-chart      79—82
Dag      39—40 42—45 116
Dangling else      202—204
Davis, M.      36
de Morgan’s laws      12
De Remer, F.L.      399 512
Decidable problem      see “Problem”
Defining equations (for context-free languages)      159—163
Denning, P.J.      426
Derivation      86 98
Derivation tree      see “Parse tree”
Derivative (of a regular expression)      136
Descendant      39
Deterministic finite automaton      116 255
Deterministic finite transducer      226—227 (see also “Finite transducer”)
Deterministic pushdown automaton      184—192 201—202 208—210 251 344 398 446 448 466—469
Deterministic pushdown transducer      229 251 271—275 341 395 443 446
Deterministic recognizer      95 (see also “Recognizer” “Deterministic “Deterministic “Deterministic
Deterministic two-stack parser      488 492—493 500
Dewar, R.B.K.      77
Diagnostics      see “Error correction”
Difference (of sets)      4
Dijkstra, E.W.      79
Direct lexical analysis      61—62 258—261
Directed acyclic graph      see “Dag”
Directed graph      see “Graph”
Disjoint sets      4
Distinguishable states (of a finite automaton)      124—128
Domain      6 10
Domolki’s algorithm      312—313 452
DPDA      see “Deterministic pushdown automaton”
DPDT      see “Deterministic pushdown transducer”
Dyck language      209
e-free first (EFF)      381—382 392 398
e-free grammar      147—149 280 302—303 397
e-move      168 190
e-production      92 147—149 362
Earley      L 332
Earley’s algorithm      73 281 320—331 397—398
EDGE      37
Eickel, J.      455
Eight queens problem      309
Elementary operation      317 319 326 395
Emptiness problem      130—132 144—145 483
Empty set      2
Empty string      15
Endmarker      94 271 341 404 469 484
Engeler, E.      58
English, structure of      55—56 78
Equivalence class      see “Equivalence relation”
Equivalence problem      130—132 201 237 362
Equivalence relation      6—7 12—13 126 133—134
Error correction      59 72—74 77 367 394 399 426
Euclid’s algorithm      26—27 36
Evans, A.      455
Evey, R.J.      166 192
Extended precedence grammar      410—415 424—425 429 451
Extended pushdown automaton      173—175 185—186
Extended pushdown transducer      269
Extended regular expression      253—258
extensible language      58 501—504
Feldman, J.A.      77 455
Fetch function (of a recognizer)      94
FIN      135 207
Final configuration      95 113 169 175 224 228 339
Final state      113 168 224
Finite ambiguity      332
Finite automaton      112—121 124—128 255—261 397
Finite control      95 443
Finite set      11 14
Finite transducer      223—227 235 237—240 242 250 252 254—255 258
first      300 335—336 357—359
Fischer, M.J.      102 426
Fischer, P.C.      36
Flow chart      79—82
Floyd — Evans productions      443—448 452
Floyd, R.W.      52 77 166 211 314 426 455
FOLLOW      343 425
Formal Semantic Language      455
FORTRAN      252 501
Freeman, D.N.      77 263
Frontier (of a parse tree)      140
Function      30 14
Futrelle, R.P.      237
Galler, B.A.      58
Generalized top-down parsing language      469—485
Gentleman, W.M.      61
Gill, A.      138
Ginsburg, S.      102—103 338 166 211 237
Ginzburg, A.      138
GNF      see “Greibach normal form”
Gotlieb, C.C.      314
goto      386—390 392
Goto function      374 392
Graham, R.M.      455
Graham, S.L.      426
Grammar      85 (see also “Bounded-right-context grammar” “Colmerauer “Context-free “Context-sensitive “Indexed “LC(k) “LL(k) “LR(k) “Operator “Precedence “Right “Unrestricted “Web
Graph      37—52
Graph grammar      see “Web grammar”
Gray, J.N.      192 280 455 500
Greek letters      214
Greibach normal form      153—162 243 280 362
Greibach, S.A.      102—103 166 211
Gries, D.      76—77
Griffiths, T.V.      314
Griswold, R.E.      505
Gross, M.      211
GTDPL      see “Generalized top-down parsing language”
Haines, L.H.      103
Halmos, P.R.      3 25
HALTING      see “Recursive” “Algorithm”
Halting problem      35
Halting pushdown automaton      282—285
Handle (of a right sentential form)      179—180 377 379—380 403—404 486
Harary, E.      52
Harrison, M.A.      138 192 280 455 500
Hartmanis, J.      36 192
Hash table      63
Haskell, R.      280
Hays, D.G.      332
Hext, J.B.      314
Hocbsprung, R.R.      77
Homomorphism      17—18 197 207 209 213
Hopcroft, J.E.      36 102—103 138 192 211 368 399
Hopgood, F.R.A.      76 455
Horning, J.J.      76—77 450 465
Huffman, D.A.      138
Ibarra, O.      192
Ichbiah, J.D.      426
Identifier      60—63 252 254
In-degree      39
Inaccessible state      see “Accessible state”
Inaccessible symbol (of a context-free grammar)      145—147
Inclusion (of sets)      3 208
Index (of an equivalence relation)      7
Indexed grammar      100—101
Indirect lexical analysis      61—62 254—258
Indistinguishable states      see “Distinguishable states”
Induction      see “Proof by induction”
Infinite set      11 14
Ingerman, P.Z.      77
Inherent ambiguity      205—207 209
INIT      135 207
Initial configuration      95 113 169
Initial state      113 168 224
Initial symbol (of a pushdown automaton)      168
Injection      10
Input head      94—96
Input symbol      113 168 218 224
Input tape      93—96
Intermediate (of an indexed grammar)      100
Intermediate code      59 65—70
Interpreter      55
Intersection      4 197 201 208 484
Inverse (of a relation)      6 10—11
Inverse Unite transducer mapping      227
Irland, M.I.      36
Irons, E.T.      77 237 314 455
Irreflexive relation      9
Item (Earley’s algorithm)      320 331 397—398
Item (LR(k))      381 (see also “Valid Item”)
Johnson, W.L.      263
k-predictive parsing algorithm      see “Predictive parsing algorithm”
Karneda, T.      138
Kasami, T.      332
Keyword      59 259
Kleene, S.C.      36 124
Knuth, D.E.      36 58 368 399 485
Korenjak, A.J.      368 399
Kosaraju, S.R.      138
Kuno, S.      313
Kurki-Suonio, R.      368
Labeled graph      38 42
LaLonde, W.R.      450
Lambda calculus      29
Language      16—17 83—84 86 96 114 169 “Grammar”)
LBA      see “Linear bounded automaton”
LC(k) grammar/language      362—367
Leavenworth, B.M.      58 501
Lee, E.S.      450
Lee, J.A.N.      76
Left cover      275—277 280 307
Left factoring      345
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå