|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Coulomb potential
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Zinn-Justin J. — Quantum field theory and critical phenomena | 35 | Zinn-Justin J. — Quantum field theory and critical phenomena | 46 | Frenkel D., Smit B. — Understanding Molecular Simulation: from algorithms to applications | 292 | Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 84 | Leach A.R. — Molecular Modelling Principles and Applications | 167, 244, 338, 341—342 | Hand L.N., Finch J.D. — Analytical Mechanics | See hyperbolic orbits, repulsive force | Chow W.W., Koch S.W. — Semiconductor-laser fundamentals | 75, 199 | Greiner W. — Quantum mechanics. An introduction | 205, 223, 231, 339, 347, 364 | Finch S.R. — Mathematical constants | 508 | Streater R.F. (Ed) — Mathematics of Contemporary Physics | 28, 34, 35, 38 | Mihaly L., Martin M.C. — Solid state physics. Problems and solutions | 243 | Domb C., Lebowitz J.L. — Phase Transitions and Critical Phenomena (Vol. 19) | 283 | Galindo A., Pascual P. — Quantum Mechanics Two | I 242 | Konopinski E.J. — Electromagnetic fields and relativistic particles | 40 | Guimaraes A.P. — Magnetism and Magnetic Resonance in Solids | 64 | Close F.E. — An introduction to quarks and partons | 7, 360—361, 370—371, 410 (see also “Fermi — Breit Hamiltonian”, “Electromagnetic mass shift”) | Thaller B. — The Dirac equation | 114, 130, 136, 148, 208, 240, 306, 309, 314, 315 | Fishbane P.M. — Physics For Scientists and Engineers with Modern Physics | 1128 | Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 348 | Greiner W., Muller B. — Gauge theory of weak interactions | 241, 263 | Unertl W.N. — Physical Structure | 154, 155 | Schechter M. — Spectra of partial differential operators | 261 | Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 189 | Peleg Y., Pnini R., Zaarur E. — Schaum's outline of theory and problems of quantum mechanics | 257 | Galindo A., Pascual P. — Quantum Mechanics One | 242 | Englert B.G. (Ed) — Quantum Mechanics | 304 | Griffits D. — Introduction to elementary particles | 148, 164, 194, 285, 287 | Deák P. — Computer Simulation of Materials at Atomic Level | 206 | Perkins D.H. — Particle Astrophysics | 11, 191 | Avery J. — Creation and Annihilation Operators | 157—161 | Stahl A. — Physics with tau leptons | 157—161 | Greiner W., Reinhardt J. — Quantum electrodynamics | 83, 286, 297, 333, 369, 386, 415 | Greiner W. — Classical electrodynamics | 5 | Cherrington B.E. — Gaseous Electronics and Gas Lasers | 6 | Halzen F., Martin A.D. — Quarks and Leptons: An Introductory Course in Modern Particle Physics | 158 | Bates D.R. — Quantum Theory | 114 | Grosche C., Steiner F. — Handbook of Feynman path integrals | 277-295 | Murrel J.N., Bosanac S.D. — Introduction to the Theory of Atomic and Molecular Collisions | 23 | Hercules Proceedings (Vol. I) (unknown book) | 273 | Phillips P. — Advanced Solid State Physics | 41, 226 | Ashcroft N.W., Mermin N.D. — Solid State Physics | see also "Long range interactions", "Screening" | Friedman H.L. — Ionic Solution Theory Based on Cluster Expansion Methods | 115, 118 | Ohanian H.C. — Classical Electrodynamics | 138 | Nouredine Z. — Quantum Mechanics: Concepts and Applications | 334, 608, 617, 623 | Schechter M. — Operator methods in quantum mechanics | 118 | Roepstorf G. — Path integral approach to quantum physics | 50, 119, 121 | Amoroso R.L. (ed.), Hunter G. (ed.), Vigier J.-P. (ed.) — Gravitation and Cosmology: From the Hubble Radius to the Planck Scale | 241, 250 | Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods | 269, 323, 328, 528—531, 539, 542, 561 | Bransden B., Joachain C. — Physics of Atoms and Molecules | 128 | Greiner W., Reinhardt J. — Field quantization | 145, 203 | Podgorsak E. — Radiation Physics for Medical Physicists | 79, 80 | Prigogine I. (ed.), Rice S.A. (ed.) — Advances in Chemical Physics. Volume XXXVI | 44, 70 | McGuire J.H. — Electron correlation dynamics in atomic collisions | 245 | Banyai L., Koch S.W. — Semiconductor quantum dots | 30, 36 | Thaller B. — The Dirac equation | 114, 130, 136, 148, 208, 240, 306, 309, 314, 315 | Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 13 | Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 420 | Koonin S.E., Meredith D.C. — Computational Physics-Fortran Version | 14, 57, 72, 121 | Greiner W. — Relativistic quantum mechanics. Wave equations | 42, 122, 234, 258 | Bates D.R. — Quantum Theory. I. Elements | 114 | Ticciati R. — Quantum field theory for mathematicians | 258 | Migdal A.B., Krainov V. — Approximation Methods in Quantum Mechanics | 18, 29, 37, 49, 94, 123, 129, 142 | Rodberg L.S., Thaler R.M. — Introduction to the quantum theory of scattering | see "Scattering" | Kardar M. — Statistical physics of fields | 40 | Glimm J., Jaffe A. — Quantum Physics: A Functional Integral Point of View | 7, 11, 20, 22, 23 | Greiner W., Maruhn J. — Nuclear models | 99, 244 | Kleinert H. — Gauge fields in condensed matter (part 2) | 166, 197, 244, 248 | Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 348 | Lilley J.S. — Nuclear physics: principles and applications | 10 | Brandt S., Dahmen H.D. — Quantum mechanics on the personal computer | 123, 125 | Ferziger J.H., Kaper H.G. — Mathematical theory of transport processes in gases | 252, 429 | Robert E Marshak — Meson physics | 44—45, 54, 72, 78, 97, 111, 119, 122, 144, 167, 174n, 222 |
|
|