| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Spiegel M.R. — Mathematical Handbook of Formulas and Tables | 41 |
| Keisler H.J. — Elementary calculus | 449 |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 93.H |
| Meirovitch L. — Methods of analytical dynamics | 59, 64 |
| Oprea J. — Differential Geometry and Its Applications | 13, 139 |
| Latrve D.R., Kreider D.L., Proctor T.G. — Hp-48G/Gx Investigations in Mathematics | 88 |
| Matsumura H. — Commutative algebra | 84 |
| Schenck H. — Computational algebraic geometry | 146 |
| Eisenbud D. — Commutative algebra with a view toward algebraic geometry | 453 |
| Smirnov V.I. — Higher mathematics. Vol.1 | 187, 266, 464 |
| Goldstein H., Poole C., Safko J. — Classical mechanics | 41, 42, 64 |
| Naber G.L. — The geometry of Minkowski spacetime: an introduction to the mathematics of the special theory of relativity | 125 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 422 |
| Franklin P. — Fourier Methods | 27(29—33) |
| Jespers E., Okninski J. — Noetherian Semigroup Algebras | 43 |
| Gershenfeld N. — The Nature of Mathematical Modelling-Neil Gershenfeld | 270 |
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 382, 472, 579 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 295 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 295 |
| Planck M. — General mechanics, being volume I of Introduction to theoretical physics | 194 |
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 382, 472, 579 |
| Coxeter H.S.M. — Introduction to Geometry | 317—321 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 93.H |
| Perry J. — The Calculus for Engineers | 62, 170 |
| National Council of Teachers of Mathematics — Historical Topics for the Mathematics Classroom Thirty-First Yearbook | 392 |
| Sokolnikoff I.S. — Higher Mathematics for Engineers and Physicists | 247, 252 |
| Lanzcos C. — The Variational Principles of Mechanics | 81 |
| Carmo M.P. — Differential geometry of curves and surfaces | 23 (Ex. 8) |
| Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 41 |
| Pedregal P. — Introduction to Optimization | 149, 164 |
| Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 456, 476 |
| Karman T., Biot A.M. — Mathematical Methods in Engineering | 9—10 |
| Kasner E., Newman J. — Mathematics and the Imagination | 107 |
| Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 11, 112, 195 |
| Guggenheimer H.W. — Differential Geometry | 25, 46, 61 |
| Spiegel M.R. — Schaum's mathematical handbook of formulas and tables | 41 |
| Chan Man Fong C.F., De Kee D., Kaloni P.N. — Advanced Mathematics for Engineering and Sciences | 778 |
| Kuttler K. — Calculus, Applications and Theory | 211 |
| Kreyszig E. — Advanced engineering mathematics | 399 |
| Coxeter H.S.M., Greitzer S.L. — Geometry revisited | 129 |
| Volovik G. — Artificial black holes | 316 |
| Bluman G.W. — Problem Book for First Year Calculus | 127-129, (III.34), [III.58; VIII.7.39] |
| Galileo G. — Dialogues concerning two new sciens | 149, 290 |
| Oprea J. — Differential Geometry and Its Applications | 12, 13, 173, 349 |
| Thompson W.J. — Computing for Scientists and Engineers: A Workbook of Analysis, Numerics, and Applications | 269-279 |
| Margenau H., Murphy G.M. — The mathematics of physics and chemistry | 58 |
| Bell E.T. — The Development of Mathematics | 373 |
| Murray D.A. — Differential and integral calculus | see "Examples" |
| Woods F.S., Bailey F.H. — Elementary Calculus | 157 |
| C. Caratheodory, F. Steinhardt — Theory of Functions of a Complex Variable. 2 Volumes | 250 |
| Simmons G.F. — Differential Equations with Applications and Historical Notes | 54, 362 |
| Snyder V., Hutchinson J.I. — Differential And Integral Calculus | 168, 283 |
| Lanczos C. — Variational principles of mechanics | 81 |
| Riley, Hobson — Mathematical Methods for Physics and Engineering | 840, 846 |
| Courant R., Hilbert D. — Methods of Mathematical Physics. Volume 1 | 172, 218 |
| Spivak M. — A Comprehensive Introduction to Differential Geometry. Volume 3 | 233 |
| Audin M. — Geometry | 299 |
| Hildebrand F.B. — Methods of Applied Mathematics | 126 |
| Woods F. S, Bailey F.H. — A course in mathematics. Volume I | 281 |
| Audin M. — Geometry | 299 |
| Demidovich B. (ed.) — Problems in mathematical analysis | 104, 105, 484 |
| Courant R., John F. — Introduction to Calculus and Analysis. Volume 1 | 378 |
| Fink K. — A brief history of mathematics | 241 |
| Kasner E., Newman J. — Mathematics and the imagination | 107 |
| Carroll R.W. — Mathematical physics | 30 |
| Lemons D.S. — Perfect form: Variational principles, methods, and applications in elementary physics | 55—56 |
| Hsiung C.-C. — A first course in differential geometry | 168, 220 |
| Luenberger D.G. — Introduction to dynamic systems | 430 |
| Tenenbaum M., Pollard H. — Ordinary differential equations: an elementary textbook for students of mathematics, engineering, and the sciences | 510 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 422 |
| Intriligator M.D. — Mathematical optimization and economic theory | 322 |
| Synge J.L., Griffith B.A. — Principles of Mechanics | 100—104, 115 |
| Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 113 |
| Greiner W. — Classical mechanics. Systems of particles and hamiltonian dynamics | 355 |
| Langhaar H.R. — Energy Methods in Applied Mechanics | 89—90 |
| Gullberg J. — Mathematics: from the birth of numbers | 538, 831 |
| Lee A. — Mathematics Applied to Continuum Mechanics | 493 |
| Franklin P. — Differential and integral calculus | 476, 621 |
| Yates R.C. — Curves and Their Properties | 12—14, 20, 63, 80, 87, 117, 124, 126, 174, 177, 182, 183, 203, 222 |
| Courant R. — Differential and Integral Calculus, Vol. 1 | 280, 288, 291 |
| Lyons L. — All You Wanted to Know about Mathematics but Were Afraid to Ask - Mathematics for Science Students. Volume 1 | 137 |
| Stillwell J. — Mathematics and its history | 171—173, 183, 240, 242 |
| Groesen E., Molenaar J. — Continuum Modeling in the Physical Sciences (Monographs on Mathematical Modeling and Computation) | 139, 142, 152 |
| Carr G.S. — Formulas and Theorems in Pure Mathematics | 5273, Me.64, 66, 68 |
| Nahin P.J. — When Least Is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible | 241—251 |
| Murray D.A. — A first course in infinitesimal calculus | see "Examples" |
| Stein S. — Strength In Numbers: Discovering the Joy and Power of Mathematics in Everyday Life | 187 |
| Lord E., Wilson C. — The Mathematical Description of Shape and Form (Mathematics and Its Applications) | 131 |
| Anthony G. — Elements of differential and integral calculus | 272 |
| Cheney W. — Analysis for Applied Mathematics | 153, 156, 169 |
| Stein S. — Strength In Numbers: Discovering the Joy and Power of Mathematics in Everyday Life | 187 |
| Logan J. — Applied Mathematics: A Contemporary Approach | 147 |
| Kline M. — Mathematical thought from ancient to modern times | 382, 472, 579 |