| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Bartle R.G. — The Elements of Integration | 65 |
| Bartle R.G. — The Elements of Real Analysis | 126, 352, 406—407, 411 |
| Nevanlinna R., Paatero V. — Introduction to Complex Analysis | 99 |
| Apostol T.M. — Calculus (vol 1) | 424 |
| Hunter J.K., Nachtergaele B. — Applied Analysis | 36 |
| Henrici P. — Applied and Computational Complex Analysis. I: Power Series, Integration, Conformal Mapping, Location of Zeros. | 74, 133, 134 |
| Rudin W. — Principles of Mathematical Analysis | 147 |
| Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 10, 17 |
| Apostol T.M. — Mathematical Analysis | 221 |
| Brauer F., Nohel J.A. — The qualitative theory of ordinary differential equations | 116, 134 |
| Hayek S.I. — Advanced mathematical methods in science and engineering | 137, 586 |
| Henrici P. — Applied and Computational Complex Analysis (Vol. 2) | 386 |
| Rudin W. — Real and Complex Analysis | 16 |
| Graves L.M. — Theory of Functions of Real Variables | 98 |
| Benson D. — Mathematics and music | 35, 42, 44 |
| Ahlfors L.V. — Complex analysis | 37 |
| Loeve M. — Probability Theory (part 2) | 114 |
| Curtain R.F., Pritchard A.J. — Functional Analysis in Modern Applied Mathematics | 42 |
| Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 12, 25 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 20—21, 27 |
| Thorisson H. — Coupling, Stationarity, and Regeneration | 46, 146, 168, 183, 401 |
| Resnick S.I. — Heavy-Tail Phenomena: Probabilistic and Statistical Modeling | 17 |
| Estep D.J. — Practical Analysis in One Variable | 323, 464 |
| Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 249 |
| Searcid M. — Metric Spaces | 112 |
| Strauss W.A. — Partial Differential Equations: An Introduction | 121, 389 |
| Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 110, 222 |
| Loeve M. — Probability Theory (part 1) | 114 |
| Aliprantis Ch.D. — Positive Operators | 95 |
| Dugunji J. — Topology | 271 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 82 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 82 |
| Wyld H.W. — Mathematical Methods for Physics | 428 |
| Jones J.A., Jones J.M. — Elementary Number Theory | 248 |
| Royden H.L. — Real Analysis | 46, 162 |
| Newman J.R. — The World of Mathematics, Volume 1 | 108 |
| Boas R.P. — A Primer of Real Functions | 110—122 |
| Lin C.C., Segel L.A. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 62 |
| Sokolnikoff I.S. — Higher Mathematics for Engineers and Physicists | 23—30, 33 |
| Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 132 |
| Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 424 |
| Bachman G., Beckenstein E. — Fourier And Wavelet Analysis | 44 |
| Stakgold I. — Green's Functions and Boundary Value Problems | 32 |
| Nikiforov A.F., Uvarov V. — Special Functions of Mathematical Physics: A Unified Introduction with Applications | 61, 212 |
| Newman J.R. (ed.) — The World of Mathematics, Volume 4 | 108 |
| Intriligator M.D., Arrow K.J. — Handbook of Mathematical Economics (vol. 1) | 194 |
| Burkhardt H. — Theory of Functions of a Complex Variable | 155, 156, 200, 202, 203 |
| Bak J., Newman D.J. — Complex Analysis | 14, 86 |
| Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems | 86 |
| Böttcher A., Grudsky S.M. — Spectral Properties of Banded Toeplitz Matrices | 59 |
| Kreyszig E. — Advanced engineering mathematics | 691 |
| Mattheij R.M.M. — Partial differential equations: modeling, analysis, computation | 631 |
| Knopp K. — Theory and applications of infinite series | 326 seq., 381, 428 seq. |
| Bell E.T. — The Development of Mathematics | 292, 477 |
| Fiske T.S. — Functions of a complex variable | 49 |
| Williamson J.H. — Lebesgue Integration | 13 |
| Browder A. — Mathematical Analysis: An Introduction | 62, 226 |
| Macrobert T.M. — Functions of a complex variable | 92, 347, 348 |
| Stavroulakis I.P., Tersian S.A. — Partial Differential Equations: An Introduction with Mathematica and Maple | 201 |
| Saul'yev V.K. — Integration of Equations of Parabolic Type By the Method of Nets | (vii), (xiii)n, 6, 12, 13, 83, 270 |
| Grosche C. — Path integrals, hyperbolic spaces, and Selberg trace formulae | 144 |
| Adams P.W., Smith K., Výborný D. — Introduction to Mathematics with Maple | 493 |
| Kreyszig E. — Introductory functional analysis with applications | 37 |
| Hu S.T. — Introduction to general topology | 144 |
| Hagen R., Roch S., Silbermann B. — Spectral Theory of Approximation Methods for Convolution Equations | 4 |
| Nehari Z. — Conformal mapping | 66, 96 |
| Aliprantis C. — Principles of real analysis | 69 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 28 |
| Abramovich Y.A., Aliprantis C.D. — An Invitation to Operator Theory | 53 |
| Hille E. — Methods in classical and functional analysis | 97 |
| Demidovich B. (ed.) — Problems in mathematical analysis | 306 |
| Courant R., John F. — Introduction to Calculus and Analysis. Volume 1 | 529, 532, 534, 535 |
| McShane E.J., Botts T.A. — Real Analysis | 82, 84ff, 225 |
| Fox L., Parker I.B. — Chebyshev Polynomials in Numerical Analysis | 45 |
| Mario Bunge — Foundations of Physics | 86 |
| Stakgold I. — Green's functions and boundary value problems | 32 |
| Katz V.J. — A History of Mathematics: An Introduction | 715, 727—729 |
| Richards P.I. — Manual of Mathematical Physics | 316 |
| Kirillov A.A., Gvishiani A.D., McFaden H.H. — Theorems and Problems in Functional Analysis | 23 |
| Jajte R. — Strong Limit Theorems in Non-Commutative Probability | 113 |
| Cloud M.J., Drachman B.C. — Inequalities: with applications to engineering | 69, 123 |
| Prössdorf S., Silbermann B. — Numerical analysis for integral and related operator equations | 15 |
| Krall A.M. — Hilbert Space, Boundary Value Problems, and Orthogonal Polynomials | 28 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 20—21, 27 |
| Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 248 |
| Hille E., Phillips R.S. — Functional Analysis and Semi-Groups | 61 |
| Jeffreys H. — Methods Of Mathematical Physics | 38, 44, 48, 351, 371 |
| Cohen G.L. — A Course in Modern Analysis and Its Applications | 59 |
| Arthur Erdélyi — Operational Calculus and Generalized Fuctions | 43 |
| Collatz L. — Functional analysis and numerical mathematics | 55 |
| Erdelyi A. — Operational Calculus and Generalized Functions | 43 |
| Courant R. — Differential and Integral Calculus, Vol. 1 | 386—397 |
| De Barra G — Measure theory and integration | 125, 128, 131, 132, 229, 235 |
| Jajte R. — Strong Limit Theorems in Noncommutative L2-Spaces | 3 |
| Bunge M. — Foundations of Physics | 86 |
| Woods F.S. — Advanced Calculus | 45, 149, 150, 152 |
| Mattheij R.M. — Partial differential equations | 631 |
| Hubbard B. — The World According to Wavelets: The Story of a Mathematical Technique in the Making | 106 |
| Zorich V. — Mathematical Analysis | 397 |
| Falconer K. — Fractal geometry: mathematical foundations and applications | 10, 17 |
| Stakgold I. — Boundary value problems of mathematical physics | 131 |
| Abramovich Y., Aliprantis C. — An Invitation to Operator Theory (Graduate Studies in Mathematics, V. 50) | 53 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 28 |
| Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 62 |
| Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 62 |
| Apostol T. — Mathematical Analysis, Second Edition | 221 |
| Lin C., Segel L. — Mathematics applied to deterministic problems in the natural sciences | 62 |
| Vretblad A. — Fourier Analysis and Its Applications (Graduate Texts in Mathematics) | 12, 24, 83, 117 |