Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Arveson W. — An Invitation to C-Algebras | 14 |
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1) | 630 |
Kassel C. — Quantum Groups | 5 |
Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 490 |
Streater R.S., Wightman A.S. — PCT, Spin and Statistics, and All That | 15, 23 |
Olver P.J. — Equivalence, Invariants and Symmetry | 80 |
Cahn R.N. — Semi-Simple Lie Algebras and Their Representations | 6 |
Dixon J.D. — Problems in Group theory | 64 |
Miller E., Sturmfels B. — Combinatorial Commutative Algebra | 288 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 323 |
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2) | 630 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 323 I |
Fulton W., Harris J. — Representation Theory: A First Course | 4 |
Potier J.L. — Lectures on vector bundles | 90 |
Atkins P.W., Friedman R.S. — Molecular Quantum Mechanics | 141 |
Artin M. — Algebra | 315 |
Ohnuki Y. — Unitary representations of the Poincare group and relativistic wave equations | 7 |
Diaconis P. — Group Representations in Probability and Statistics | 5 |
Pedersen G.K. — C*-algebras and their automorphism groups | 84 |
Miessler G., Tarr D.A. — Inorganic Chemistry | 96—102, 105—107 |
Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 31, 184, 215, 418 |
Hazewinkel M. (ed.) — Handbook of Algebra, Volume 4 | 111 |
Lando S.K., Zvonkin A.K. — Graphs on Surfaces and Their Applications | 390 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 231 |
Lam T.Y. — A first course in noncommutative ring theory | 83 |
Holt D.F., Bettina E., Eamonn O. — Handbook of Computational Group Theory | 49 |
Araki H. — Mathematical Theory of Quantum Fields | 66 |
Banaszczyk W. — Additive Subgroups of Topological Vector Spaces | 14 |
Kolar I., Michor P.W., Slovak J. — Natural Operations in Differential Geometry | 131 |
Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry | 250 |
Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding | 91 |
James G., Liebeck M.W. — Representations and Characters of Groups | 50, 79 |
Lounesto P., Hitchin N.J. (Ed), Cassels J.W. (Ed) — Clifford Algebras and Spinors | 228, 232 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 371 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 371 |
Geroch R. — Mathematical physics | 128 |
Waterhouse W.C. — Introduction to Affine Group Schemes | 63 |
James G.D. — The Representation Theory of the Symmetric Groups | 16, 39, 40, 71 |
Chaikin P.M., Lubensky T.C. — Principles of condensed matter physics | 134, 674 |
Ziman J.M. — Elements of Advanced Quantum Theory | 218, 221, 232, 236, 245, 253, 255, 256 |
Fateley W.G. — Infrared and Raman Selection Rules for Molecular and Lattice Vibrations | 12, 13 |
Waterhouse W.C. — Introduction to Affine Group Schemes, Vol. 66 | 63 |
Altmann S.L. — Band Theory of Solids: An Introduction from the Point of View of Symmetry | 37 |
Neukrich J. — Algebraic number theory | 519 |
Galindo A., Pascual P. — Quantum Mechanics Two | I 193, 277 |
Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 711, 727—734, 740, 741, 744, 745, 751, 753, 754, 756, 757, 759, 763, 765, 766, 848, 1031 |
Brocker Th., Dieck T.T. — Representations of Compact Lie Groups | 68, 141 |
Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 6, 15 |
Lopuzanski J. — An introduction to symmetry and supersymmetry in quantum field theory | 66 |
Passman D.S. — Permutation groups | 148 |
Galindo A., Pascual P. — Quantum Mechanics One | 193, 277 |
Griffits D. — Introduction to elementary particles | 107 |
Arias J.M., Lozano M. — The Hispalensis Lectures On Nuclear Physics, Vol. 2 | 293 |
Halzen F., Martin A.D. — Quarks and Leptons: An Introductory Course in Modern Particle Physics | 38 |
Greiner W., Mueller B. — Quantum mechanics: symmetries | 59 |
Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 110, 232, 402, 484 |
Tomotada O. — Quantum invariants: a study of knots, 3-manifolds, and their sets | 7 |
Siegel W. — Fields | IB2 |
Conway J.B. — A Course in Functional Analysis | 268 |
Wald R.M. — Quantum field theory in curved spacetime and black hole thermodynamics | 19, 83—84 |
Sternberg S. — Group Theory and Physics | 49 |
Behrens E.-A. — Ring Theory: Volume 44 in Pure and Applied Mathematics | 116 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 459 |
Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry | 250 |
Perina J., Hradil Z., Jurco B. — Quantum optics and fundamentals of physics | 84 |
Ohtsuki T. — Quantum invariants: a study of knot, 3-manifolds, and their sets | 77 |
Bayin S.S. — Mathematical Methods in Science and Engineering | 247 |
Ya Helemskii A., West A. — Banach and locally convex algebras | 295 |
Streater R.F., Wightman A.S. — PCT, spin and statistics and all that | 15, 23 |
Wilson E.B. — Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra | 97 |
Villareal R.H. — Monomial algebras | 214 |
Domb C.M., Green M. — Phase Transitions and Critical Phenomena: Series Expansion for Lattice Models, Vol. 3 | 292 |
Stoll W. — Value Distribution on Parabolic Spaces | 28 |
Serre J.-P. — Complex Semisimple Lie Algebras | 8 |
Loomis L.H. — An introduction to abstract harmonic analysis | 163 |
Siegel W. — Fields | IB2 |
Chaikin P., Lubensky T. — Principles of condensed matter physics | 134, 674 |
Donoghue W.F. — Distributions and Fourier transforms | 173 |
Lounesto P. — Clifford algebras and spinors | 228, 232 |
Banyai L., Koch S.W. — Semiconductor quantum dots | 102 |
Villarreal R.H. — Monomial Algebras | 214 |
Laurens Jansen — Theory of Finite Groups. Applications in Physics | 79, 80, 92ff. |
Ticciati R. — Quantum field theory for mathematicians | 144 |
Pier J.-P. — Mathematical Analysis during the 20th Century | 150 |
Geroch R. — Mathematical physics | 128 |
Morris S. — Pontryagin Duality and the Structure of Locally Compact Abelian Groups | 116 |
Springer T. — Invariant theory (Lecture notes in mathematics ; 585) | 16 |
Hejhal D.A. — The Selberg Trace Formula for PSL(2,R) (volume 2) | 267, 481, 596 |
Greiner W., Maruhn J. — Nuclear models | 184 |
Sexl R., Urbantke H.K. — Relativity, Groups, Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics | 155, 159 |
Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 11 |
Burgisser P., Clausen M., Shokrollahi M.A. — Algebraic complexity theory | 329 |
Meyer-Ortmanns H., Reisz T. — Principles of phase structures in particle physics | 231 |
Sagle A. A. — Introduction to Lie groups and Lie algebras | 246, 329, 330 |
Geroch R. — Mathematical physics | 128 |
Neusel M.D. — Invariant Theory of Finite Groups | 75 |
Reiner I. — Representation theory of finite groups and related topics (Proceedings of symposia in pure mathematics) | 13, 169 |
Knuth D.E. — Selected papers on discrete mathematics | 445 |
Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | see "representation, irreducible" |