Авторизация
Поиск по указателям
Reiner I. — Representation theory of finite groups and related topics (Proceedings of symposia in pure mathematics)
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Representation theory of finite groups and related topics (Proceedings of symposia in pure mathematics)
Автор: Reiner I.
Аннотация: The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students.
A Primer on Mapping Class Groups begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.
Read more at http://ebookee.org/A-Primer-on-Mapping-Class-Groups-PMS-49-Princeton-Mathematical_1558997.html#GfyXu5RwL2yS232W.99
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1971
Количество страниц: 185
Добавлена в каталог: 16.04.2014
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
68
= 19
(M-homogeneous) 21 22
( -free) 21 22
20
107
-theorem 117
-ring 155
-decomposition 29
-decomposition, isomorphic refinements 30
1-1 condition 141
Abelian normal subgroup 37
Adams operations 156
Adjoints to restriction 42
Admissible lattice 169
Admissible lattice, irreducibility criterion 170
Admissible transformations 113
Affine group 146
Algebra 111
Algebra, bounded type 111
Algebra, finite type 111
Algebra, indecomposable representations 111
Algebra, matrix questions 113
Algebra, polynomial part 120
Algebra, strongly unbounded type 111
Algebra, unbounded type 111
Algebraic maps 39 40 42 43
Algebraic maps, transfer 42 44
Alternating form 73
Alternating group 95
Automorphism 25
Automorphism (B,N) pair 91
Basic set 8
Bass-order 130 137—142
Bass-order, completely primary 133
Bass-ring 131 137
Block, type of block 10
Bounded type 111
Brauer characters 124
Brauer homomorphism 140
Brauer's first fundamental theorem 141
Brauer's second fundamental theorem 142
Brauer's second main theorem on blocks 124
Cancellation 85
Cancellation for modules 31
Category of G-functors 42
Character ring functor 58
Character table 97
Characteristic powers 1
Characterization of characters 124
Characters 49 51
Characters, Brauer characters 124
Characters, character table 97
Characters, characterization of characters 124
Characters, extension of character 51
Characters, invariant 51
Characters, irreducible 3 80—82 146
Characters, orthogonality relations 49
Characters, permutation 73
Characters, principal indecomposable 123
Characters, q-modular (Brauer) 97
Chevalley groups 1
Chevalley groups, finite 13
Chevalley groups, Hecke algebra 2
Chevalley groups, irreducible representation 13 169
Cohomology ring functor 59
Completely primary Bass-order 133
Compounds 92
Conjugacy classes 51 78
Contravariant form 170
Conway group 108
Cusp form 150
Decomposition matrix 124
Decomposition numbers 138
Defect 0 and 1 142
Defect base 60
Defect group 61 139
Defect-basis 44
Doubly transitive group 67
Exchange property 30
Exponentials 40
Extension of character 51
F.C. subgroup 117
Factorizable groups 77
Fields of characteristic p 99
Finite Chevalley groups 13
Finite groups, 68
Finite groups, 20
Finite groups, 107
Finite groups, (B,N) pair 91
Finite groups, 1-1 condition 141
Finite groups, adjoints to restriction 42
Finite groups, algebraic maps 39 40 42 43
Finite groups, alternating group 95
Finite groups, automorphism 25
Finite groups, basic set 8
Finite groups, Brauer homomorphism 140
Finite groups, Chevalley groups 1
Finite groups, Conjugacy classes 51 78
Finite groups, Conway group 108
Finite groups, doubly transitive group 67
Finite groups, exponentials 40
Finite groups, fixed point subgroup 25
Finite groups, G-functor 42 43 44 57 124
Finite groups, generalized quaternion groups 74
Finite groups, GL(n,C) 37
Finite groups, Hecke algebra 91
Finite groups, hyperelementary groups 97
Finite groups, indecomposable representations 89
Finite groups, index parameters of G 91
Finite groups, integral representation ring 173
Finite groups, leech lattice 108
Finite groups, linear group 37
Finite groups, metacyclic groups 65 79
Finite groups, nonsimplicity 47
Finite groups, onto condition 141
Finite groups, permutation character 73
Finite groups, projective oG-modules 88
Finite groups, real representations 66
Finite groups, reflection representation 92
Finite groups, relative Grothendieck rings 44 99
Finite groups, representation modules 165 166
Finite groups, representations of finite groups 99
Finite groups, Suzuki group 107
Finite groups, sylow 2-subgroups of simple groups 53
Finite groups, units in 41
Finite groups, X-graded Clifford system 20
Finite type 111
Fixed point subgroup 25
Frobenius algebra 49
Frobenius algebra, characters 49
Frobenius — Schur formula 98
Frobenius-Schur formula 98
Fundamental module 89
G-algebra 59
G-functor 42 43 44 57 124
G-functor, category of G-functors 42
G-functor, character ring functor 58
G-functor, cohomology ring functor 59
G-functor, defect base 60
G-functor, defect group 61 139
G-functor, G-algebra 59
G-functor, Grothendieck ring functors 59
G-functor, subgroup category 58
G-functor, transfer theorem 61
Genera of R-lattices 85
Generalized polynomial identity 119
Generalized quaterion groups 74
Generic degree 2
Generic ring 1 92
Genus 85
Genus, restricted genus 87
GL(n,C) 37
Gorenstein-ring 131—133 137 138
Green's polynomials 149
Grothendieck ring functors 59
Group ring 117
Group, Lie 13
Group, primitive 37
Group, simple 13 161
Hecke algebra 2 91
Hyperelementary groups 97
Indecomposable lattice 137 140
Indecomposable representations 89 111
Indecomposable representations, infinite type 111
Index parameters of G 91
Induction theorems 44 45
Infinite type 111
Integral representation 85
Integral representation ring 173
Invariant character 51
Invariant character, -blocks 124
Invariant character, parabolic type 3
Irreducibility criterion 170
Irreducible character 3 80-82 146
Irreducible character, generic degree 2
Irreducible character, green's polynomials 149
Irreducible representation 13 169
Isomorphic refinements 30
Krull — Schmidt (— Azumaya) theorem 29
Lattice, cancellation 85
Lattice, genera of R-lattices 85
Lattice, genus 85
Lattice, indecomposable 137 140
Lattice, local direct factor of M 87
Leech lattice 108
Lie algebra Cusp form 150
Lie groups 13
Linear group 37
Local direct factor M 87
Matrix questions 113
Matrix questions, admissible transformations 113
Metacyclic groups 65 79
Metacyclic groups, split 65
Modular theory of permutation representations 137
Modules, (M-homogeneous) 21 22
Modules, ( -free) 21 22
Modules, -decomposition 29
Modules, admissible lattice 169
Modules, Brauer's first fundamental theorem 141
Modules, cancellation for modules 31
Modules, contravariant form 170
Modules, decomposition numbers 138
Modules, defect 0 and 1 142
Modules, exchange property 30
Modules, fundamental 89
Modules, Krull — Schmidt (— Azumaya) theorem 29
Modules, Schur index 97
Modules, tensor product theorem 171
Modules, vertex 165 166
Nilpotent radical 118
Nonsimplicity 47
O-order 85
Onto condition 141
Order, bass-order 130 137 142
Order, integral representation 85
Orthogonal idempotent decomposition 166 167
Orthogonality relations 49
Orthogonality relations, -blocks 124
Orthogonality relations, Brauer's second main theorem on blocks 124
Parabolic type 3
Parabolic type, partially ordered set 114
Permutation character 73
Polynomial identity 118
Polynomial part 120
Prime rings 117
primitive 37
primitive 37
Principal indecomposable characters 123
Principal indecomposable characters 123
Projective ideal 166
Projective ideal 166
Projective ideal, orthogonal idempotent decomposition 166 167
Projective oG-modules 88
Projective oG-modules 88
q-modular (Brauer) character 97
Real representations 66
Real representations 66
Reflection representation 92
Reflection representation 92
Reflection representation, compounds 92
Reflection representation, compounds 92
Relative Grothendieck rings 44 99
Relative Grothendieck rings 44 99
Relative Grothendieck rings, Defect-basis 44
Relative Grothendieck rings, Defect-basis 44
Relative Grothendieck rings, induction theorems 44 45
Relative Grothendieck rings, induction theorems 44 45
Representation algebra 165
Representation algebra 165
Representation modules 65 66
Representation modules 65 66
Representation modules, projective ideal 166
Representation modules, representation algebra 165
Representation of finite groups 99
Representation of finite groups 99
Representation of finite groups, modular theory of permutation representations 137
Restricted genus 87
Restricted genus 87
Ring, -theorem 117
Ring, -theorem 117
Ring, -ring 155
Ring, -ring 155
Ring, Adams operations 156
Ring, Adams operations 156
Ring, bass-ring 131 137
Ring, bass-ring 131 137
Ring, Generalized polynomial identity 119
Ring, Gorenstein-ring 131—133 137 138
Ring, group ring 117
Ring, integral representation ring 173
Ring, integral representation ring 173
Ring, o-order 85
Ring, o-order 85
Ring, polynomial identity 118
Ring, polynomial identity 118
Ring, prime 117
Ring, prime 117
Ring, semiprime 118
Ring, semisimple 120
Ring, semisimple 120
Ring, splitting principle 155
Schur index 97
Schur index 97
Semiprime rings 118
Semiprime rings, nilpotent radical 118
Semisimple rings 120
Semisimple rings 120
Semisimple rings sets of primes 123
Semisimple rings sets of primes 123
Simple groups 13 162
Simple groups 13 162
Split metacyclic groups 65
Split metacyclic groups 65
Splitting principle 155
Splitting principle 155
Strongly embedded subgroup 69
Strongly embedded subgroup 69
Strongly unbounded type 111
Subgroup category 58
Реклама