Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Reiner I. — Representation theory of finite groups and related topics (Proceedings of symposia in pure mathematics)
Reiner I. — Representation theory of finite groups and related topics (Proceedings of symposia in pure mathematics)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Representation theory of finite groups and related topics (Proceedings of symposia in pure mathematics)

Автор: Reiner I.

Аннотация:

The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students.

A Primer on Mapping Class Groups begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.

Read more at http://ebookee.org/A-Primer-on-Mapping-Class-Groups-PMS-49-Princeton-Mathematical_1558997.html#GfyXu5RwL2yS232W.99


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1971

Количество страниц: 185

Добавлена в каталог: 16.04.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Subgroups, Abelian normal subgroup      37
Subgroups, F.C. subgroup      117
Subgroups, strongly embedded      69
Subgroups, weakly closed      26
Suzuki group      107
Suzuki group      107
Sylow 2-subgroups of simple groups      53
Sylow 2-subgroups of simple groups      53
System of (B,N)-pairs of type (W,R)      1
System of (B,N)-pairs of type (W,R)      1
System of (B,N)-pairs of type (W,R), characteristic powers      1
System of (B,N)-pairs of type (W,R), characteristic powers      1
System of (B,N)-pairs of type (W,R), generic ring      1 72
Tensor product theorem      171
TRANSFER      42 44
TRANSFER      42 44
Transfer theorem      61
Transfer theorem      61
Type of block      10
Type of block      10
Unbounded type      111
Unbounded type      111
Unbounded type, strongly      111
Unbounded type, strongly      111
Units in $\Omega(G)G      41
Units in $\Omega(G)G      41
Vector space, alternating form      73
Vector space, alternating form      73
Vertex      165 166
Vertex      165 166
Vertex, $a_{\chi}$ = $max\{|G|p/|B||B\in\mathscr{V}_{\chi}\}$      19
Weakly closed subgroups      26
Weakly closed subgroups      26
X-graded Clifford system      20
X-graded Clifford system      20
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2022
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте