Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Passman D.S. — Permutation groups
Passman D.S. — Permutation groups

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Permutation groups

Автор: Passman D.S.

Аннотация:

These are the lecture notes from a rather crowded one-term course I gave at Yale University in the spring of 1967. My aim at that time was to give a self-contained account of certain classification theorems in the field of permutation groups. These are theorems which are frequently quoted and yet are reasonably inaccessible. In particular I refer to the work of Zassenhaus on Frobenius complements and sharply transitive groups, and to the work of Huppert on solvable doubly transitive groups. The students were assumed to be familiar with elementary group theory, linear algebra, and Galois theory, or in other words with material covered in a basic course in modern algebra.


Язык: en

Рубрика: Математика/

Серия: Сделано в холле

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1968

Количество страниц: 310

Добавлена в каталог: 23.05.2011

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$C_{\pi}$      89
$D_{\pi}$      89
$E_{\pi}$      89
$L(q^{n})$      260
$M(q^{n})$      261
$S(q^{n})$      230
$S_{0}(q^{n})$      230
$S_{\pi}$ subgroup      89
$T(q^{n})$      229
$T_{0}(q^{n})$      229
$\pi$-number      89
3/2-transitive      57
A(X)      109
A-group      109
Absolutely irreducible      152
Alternating group (Alt)      7
Automorphism group (Aut)      26
Automorphism tower      50
Characteristic of a field (char)      144
Complete group      39
Completely reducible      148
CYCLE      2
Degree      2
Dihedral group      68
F-representation      144
Factor system      78
Fitting subgroup (Fit)      92
Focal series      100
Focal subgroup (Foc)      100
Fractional linear transformations      260
Frattini subgroup (Fr)      93
Frobenius complement      60
Frobenius group      57
Frobenius kernel      60
General linear group (GL)      115
Group character      165
Half-transitive      12
Hall subgroup      83
Hyper focal      101
Imprimitive      14
Induced character      170
Inner automorphism group (Inn)      27
Intertwine      150
Involution      236
Irreducible character      165
Irreducible representation      148
Kernel of a character      174
Mathieu groups $M_{11}$, $M_{12}$      290
Mathieu groups $M_{22}$, $M_{23}$, $M_{24}$      295
n-transitive      16
Normal $\pi$-complement      101
Normal persistence      43
Orbit      12
Outer automorphism group (Out)      27
p-length      107
p-solvable      107
Permutation F-representation      145
Permutation group      2
primitive      14
Projective special linear group (PSL)      115
Quaternion group      68
Reciprocity      172
Regular      13
Regular F-representation      145
Regular normal subgroup      20
Semidihedral group      68
Semilinear transformations      229
Semiregular      13
Semisimple group      40
Sharply k-transitive      255
Similar      144
Span (Span)      155
Special linear group (SL)      115
Splitting field      158
Subnormal persistence      44
Subnormal subgroup      42
Subset of imprimitivity      14
Symmetric group (Sym)      1
T.I. set      58
Thompson subgroup $(\mathcal{J})$      125
TRANSFER      96
Transitive      12
Unit F-representation      145
Wreath product      9
Z-group      104
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2019
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте